Chance-Constrained AC Optimal Power Flow: A Polynomial Chaos Approach

被引:42
|
作者
Muhlpfordt, Tillmann [1 ]
Roald, Line [2 ]
Hagenmeyer, Veit [1 ]
Faulwasser, Timm [1 ]
Misra, Sidhant [3 ]
机构
[1] Karlsruhe Inst Technol, Inst Automat & Appl Informat, D-76344 Eggenstein Leopoldshafen, Germany
[2] Univ Wisconsin, Elect & Comp Engn, Madison, WI 53706 USA
[3] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
关键词
AC optimal power flow; uncertainty; polynomial chaos expansion; chance constraints; SYSTEMS;
D O I
10.1109/TPWRS.2019.2918363
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
As the share of renewables in the grid increases, the operation of power systems becomes more challenging. The present paper proposes a method to formulate and solve chance-constrained optimal power flow while explicitly considering the full nonlinear AC power flow equations and stochastic uncertainties. We use polynomial chaos expansion to model the effects of arbitrary uncertainties of finite variance, which enables to predict and optimize the system state for a range of operating conditions. We apply chance constraints to limit the probability of violations of inequality constraints. Our method incorporates a more detailed and a more flexible description of both the controllable variables and the resulting system state than previous methods. Two case studies highlight the efficacy of the method, with a focus on satisfaction of the AC power flow equations and on the accurate computation of moments of all random variables.
引用
收藏
页码:4806 / 4816
页数:11
相关论文
共 50 条
  • [1] Chance-Constrained AC Optimal Power Flow: Reformulations and Efficient Algorithms
    Roald, Line
    Andersson, Goran
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2018, 33 (03) : 2906 - 2918
  • [2] Chance-Constrained AC Optimal Power Flow for Distribution Systems With Renewables
    Anese, Emiliano Dall'
    Baker, Kyri
    Summers, Tyler
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2017, 32 (05) : 3427 - 3438
  • [3] Asymptotically tight conic approximations for chance-constrained AC optimal power flow
    Fathabad, Abolhassan Mohammadi
    Cheng, Jianqiang
    Pan, Kai
    Yang, Boshi
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2023, 305 (02) : 738 - 753
  • [4] Chance-constrained AC optimal power flow integrating HVDC lines and controllability
    Venzke, Andreas
    Halilbasic, Lejla
    Barre, Adelie
    Roald, Line
    Chatzivasileiadis, Spyros
    [J]. INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2020, 116
  • [5] Importance Sampling Approach to Chance-Constrained DC Optimal Power Flow
    Lukashevich, Aleksander
    Gorchakov, Vyacheslav
    Vorobev, Petr
    Deka, Deepjyoti
    Maximov, Yury
    [J]. IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2024, 11 (02): : 928 - 937
  • [6] A generalized framework for chance-constrained optimal power flow
    Muehlpfordt, Tillmann
    Faulwasser, Timm
    Hagenmeyer, Veit
    [J]. SUSTAINABLE ENERGY GRIDS & NETWORKS, 2018, 16 : 231 - 242
  • [7] Optimal Load Ensemble Control in Chance-Constrained Optimal Power Flow
    Hassan, Ali
    Mieth, Robert
    Chertkov, Michael
    Deka, Deepjyoti
    Dvorkin, Yury
    [J]. IEEE TRANSACTIONS ON SMART GRID, 2019, 10 (05) : 5186 - 5195
  • [8] Rare Event Chance-Constrained Optimal Control Using Polynomial Chaos and Subset Simulation
    Piprek, Patrick
    Gros, Sebastien
    Holzapfel, Florian
    [J]. PROCESSES, 2019, 7 (04)
  • [9] An Iterative Response-Surface-Based Approach for Chance-Constrained AC Optimal Power Flow Considering Dependent Uncertainty
    Xu, Yijun
    Korkali, Mert
    Mili, Lamine
    Valinejad, Jaber
    Chen, Tao
    Chen, Xiao
    [J]. IEEE TRANSACTIONS ON SMART GRID, 2021, 12 (03) : 2696 - 2707
  • [10] The polynomial chaos approach for reachable set propagation with application to chance-constrained nonlinear optimal control under parametric uncertainties
    Bergner, Lilli
    Kirches, Christian
    [J]. OPTIMAL CONTROL APPLICATIONS & METHODS, 2018, 39 (02): : 471 - 488