A generalized framework for chance-constrained optimal power flow

被引:29
|
作者
Muehlpfordt, Tillmann [1 ]
Faulwasser, Timm [1 ]
Hagenmeyer, Veit [1 ]
机构
[1] Karlsruhe Inst Technol, Inst Automat & Appl Informat, Karlsruhe, Germany
来源
关键词
Chance-constrained optimal power flow; Uncertainties; Affine policies; Polynomial chaos;
D O I
10.1016/j.segan.2018.08.002
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Deregulated energy markets, demand forecasting, and the continuously increasing share of renewable energy sources call - among others - for a structured consideration of uncertainties in optimal power flow problems. The main challenge is to guarantee power balance while maintaining economic and secure operation. In the presence of Gaussian uncertainties affine feedback policies are known to be viable options for this task. The present paper advocates a general framework for chance-constrained OPF problems in terms of continuous random variables. It is shown that, irrespective of the type of distribution, the random-variable minimizers lead to affine feedback policies. Introducing a three-step methodology that exploits polynomial chaos expansion, the present paper provides a constructive approach to chance-constrained optimal power flow problems that does not assume a specific distribution, e.g. Gaussian, for the uncertainties. We illustrate our findings by means of a tutorial example and a 300-bus test case. (C) 2018 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:231 / 242
页数:12
相关论文
共 50 条
  • [1] Optimal Load Ensemble Control in Chance-Constrained Optimal Power Flow
    Hassan, Ali
    Mieth, Robert
    Chertkov, Michael
    Deka, Deepjyoti
    Dvorkin, Yury
    [J]. IEEE TRANSACTIONS ON SMART GRID, 2019, 10 (05) : 5186 - 5195
  • [2] Chance-Constrained AC Optimal Power Flow: A Polynomial Chaos Approach
    Muhlpfordt, Tillmann
    Roald, Line
    Hagenmeyer, Veit
    Faulwasser, Timm
    Misra, Sidhant
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2019, 34 (06) : 4806 - 4816
  • [3] Chance-Constrained AC Optimal Power Flow: Reformulations and Efficient Algorithms
    Roald, Line
    Andersson, Goran
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2018, 33 (03) : 2906 - 2918
  • [4] Importance Sampling Approach to Chance-Constrained DC Optimal Power Flow
    Lukashevich, Aleksander
    Gorchakov, Vyacheslav
    Vorobev, Petr
    Deka, Deepjyoti
    Maximov, Yury
    [J]. IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2024, 11 (02): : 928 - 937
  • [5] Chance-Constrained AC Optimal Power Flow for Distribution Systems With Renewables
    Anese, Emiliano Dall'
    Baker, Kyri
    Summers, Tyler
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2017, 32 (05) : 3427 - 3438
  • [6] Chance-constrained optimal power flow based on a linearized network model
    Du, Xiao
    Lin, Xingyu
    Peng, Zhiyun
    Peng, Sui
    Tang, Junjie
    Li, Wenyuan
    [J]. INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2021, 130
  • [7] CHANCE-CONSTRAINED GENERALIZED NETWORKS
    CHARNES, A
    KIRBY, M
    RAIKE, W
    [J]. OPERATIONS RESEARCH, 1966, 14 (06) : 1113 - &
  • [8] Analytical Reformulation of Chance-Constrained Optimal Power Flow with Uncertain Load Control
    Li, Bowen
    Mathieu, Johanna L.
    [J]. 2015 IEEE EINDHOVEN POWERTECH, 2015,
  • [9] Asymptotically tight conic approximations for chance-constrained AC optimal power flow
    Fathabad, Abolhassan Mohammadi
    Cheng, Jianqiang
    Pan, Kai
    Yang, Boshi
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2023, 305 (02) : 738 - 753
  • [10] Distributed chance-constrained optimal power flow based on primary frequency control
    Velay, Maxime
    Vinyals, Meritxell
    Besanger, Yvon
    Retiere, Nicolas
    [J]. E-ENERGY'18: PROCEEDINGS OF THE 9TH ACM INTERNATIONAL CONFERENCE ON FUTURE ENERGY SYSTEMS, 2018, : 366 - 374