Optimal Load Ensemble Control in Chance-Constrained Optimal Power Flow

被引:30
|
作者
Hassan, Ali [1 ]
Mieth, Robert [1 ,2 ]
Chertkov, Michael [3 ]
Deka, Deepjyoti [3 ]
Dvorkin, Yury [1 ]
机构
[1] NYU, Tandon Sch Engn, Dept Elect & Comp Engn, New York, NY 10012 USA
[2] Tech Univ Berlin, Fak Elektrotech & Informat 4, D-10587 Berlin, Germany
[3] Los Alamos Natl Lab, Theory Div, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
关键词
Chance constraints; dynamic programming; linearly solvable MDP; Markov decision process; optimal power flow; spatio-temporal dual decomposition algorithm; TCL ensemble; thermostatically controlled loads; uncertainty; DISTRIBUTION-SYSTEMS;
D O I
10.1109/TSG.2018.2878757
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Distribution system operators (DSOs) world-wide foresee a rapid roll-out of distributed energy resources. From the system perspective, their reliable and cost effective integration requires accounting for their physical properties in operating tools used by the DSO. This paper describes a decomposable approach to leverage the dispatch flexibility of thermostatically controlled loads (TCLs) for operating distribution systems with a high penetration level of photovoltaic resources. Each TCL ensemble is modeled using the Markov decision process (MDP). The MDP model is then integrated with a chance constrained optimal power flow that accounts for the uncertainty of photovoltaic resources. Since the integrated optimization model cannot be solved efficiently by existing dynamic programming methods or off-the-shelf solvers, this paper proposes an iterative spatiotemporal dual decomposition algorithm (ST-D2). We demonstrate the merits of the proposed integrated optimization and ST-D2 algorithm on the IEEE 33-bus test system.
引用
收藏
页码:5186 / 5195
页数:10
相关论文
共 50 条
  • [1] Analytical Reformulation of Chance-Constrained Optimal Power Flow with Uncertain Load Control
    Li, Bowen
    Mathieu, Johanna L.
    [J]. 2015 IEEE EINDHOVEN POWERTECH, 2015,
  • [2] A generalized framework for chance-constrained optimal power flow
    Muehlpfordt, Tillmann
    Faulwasser, Timm
    Hagenmeyer, Veit
    [J]. SUSTAINABLE ENERGY GRIDS & NETWORKS, 2018, 16 : 231 - 242
  • [3] Distributed chance-constrained optimal power flow based on primary frequency control
    Velay, Maxime
    Vinyals, Meritxell
    Besanger, Yvon
    Retiere, Nicolas
    [J]. E-ENERGY'18: PROCEEDINGS OF THE 9TH ACM INTERNATIONAL CONFERENCE ON FUTURE ENERGY SYSTEMS, 2018, : 366 - 374
  • [4] Chance-Constrained AC Optimal Power Flow: A Polynomial Chaos Approach
    Muhlpfordt, Tillmann
    Roald, Line
    Hagenmeyer, Veit
    Faulwasser, Timm
    Misra, Sidhant
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2019, 34 (06) : 4806 - 4816
  • [5] Chance-Constrained AC Optimal Power Flow: Reformulations and Efficient Algorithms
    Roald, Line
    Andersson, Goran
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2018, 33 (03) : 2906 - 2918
  • [6] Importance Sampling Approach to Chance-Constrained DC Optimal Power Flow
    Lukashevich, Aleksander
    Gorchakov, Vyacheslav
    Vorobev, Petr
    Deka, Deepjyoti
    Maximov, Yury
    [J]. IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2024, 11 (02): : 928 - 937
  • [7] Chance-Constrained AC Optimal Power Flow for Distribution Systems With Renewables
    Anese, Emiliano Dall'
    Baker, Kyri
    Summers, Tyler
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2017, 32 (05) : 3427 - 3438
  • [8] Chance-constrained optimal power flow based on a linearized network model
    Du, Xiao
    Lin, Xingyu
    Peng, Zhiyun
    Peng, Sui
    Tang, Junjie
    Li, Wenyuan
    [J]. INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2021, 130
  • [9] Chance-Constrained Optimal Power Flow: Risk-Aware Network Control under Uncertainty
    Bienstock, Daniel
    Chertkov, Michael
    Harnett, Sean
    [J]. SIAM REVIEW, 2014, 56 (03) : 461 - 495
  • [10] Asymptotically tight conic approximations for chance-constrained AC optimal power flow
    Fathabad, Abolhassan Mohammadi
    Cheng, Jianqiang
    Pan, Kai
    Yang, Boshi
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2023, 305 (02) : 738 - 753