A generalized framework for chance-constrained optimal power flow

被引:29
|
作者
Muehlpfordt, Tillmann [1 ]
Faulwasser, Timm [1 ]
Hagenmeyer, Veit [1 ]
机构
[1] Karlsruhe Inst Technol, Inst Automat & Appl Informat, Karlsruhe, Germany
来源
关键词
Chance-constrained optimal power flow; Uncertainties; Affine policies; Polynomial chaos;
D O I
10.1016/j.segan.2018.08.002
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Deregulated energy markets, demand forecasting, and the continuously increasing share of renewable energy sources call - among others - for a structured consideration of uncertainties in optimal power flow problems. The main challenge is to guarantee power balance while maintaining economic and secure operation. In the presence of Gaussian uncertainties affine feedback policies are known to be viable options for this task. The present paper advocates a general framework for chance-constrained OPF problems in terms of continuous random variables. It is shown that, irrespective of the type of distribution, the random-variable minimizers lead to affine feedback policies. Introducing a three-step methodology that exploits polynomial chaos expansion, the present paper provides a constructive approach to chance-constrained optimal power flow problems that does not assume a specific distribution, e.g. Gaussian, for the uncertainties. We illustrate our findings by means of a tutorial example and a 300-bus test case. (C) 2018 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:231 / 242
页数:12
相关论文
共 50 条
  • [21] Optimal Dispatch Based on Chance-constrained Programming
    Zeng, Kaiwen
    Pan, Mengqi
    Li, Bo
    Liu, Jianing
    Wang, Qi
    Guo, Yufeng
    [J]. 2018 IEEE PES ASIA-PACIFIC POWER AND ENERGY ENGINEERING CONFERENCE (APPEEC), 2018,
  • [22] Chance-constrained optimal power flow with non-parametic probability distributions of dynamic line ratings
    Viafora, Nicola
    Delikaraoglou, Stefanos
    Pinson, Pierre
    Holboll, Joachim
    [J]. INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2020, 114
  • [23] Chance-Constrained Optimal Path Planning With Obstacles
    Blackmore, Lars
    Ono, Masahiro
    Williams, Brian C.
    [J]. IEEE TRANSACTIONS ON ROBOTICS, 2011, 27 (06) : 1080 - 1094
  • [24] Random-Fuzzy Chance-Constrained Programming Optimal Power Flow of Wind Integrated Power Considering Voltage Stability
    Ma, Rui
    Li, Xuan
    Gao, Weicheng
    Lu, Peng
    Wang, Tieqiang
    [J]. IEEE ACCESS, 2020, 8 : 217957 - 217966
  • [25] Chance-Constrained Optimal Distribution Network Partitioning to Enhance Power Grid Resilience
    Biswas, Shuchismita
    Singh, Manish K.
    Centeno, Virgilio A.
    [J]. IEEE ACCESS, 2021, 9 : 42169 - 42181
  • [26] GP CC-OPF: Gaussian Process based optimization tool for Chance-Constrained Optimal Power Flow
    Mitrovic, Mile
    Kundacina, Ognjen
    Lukashevich, Aleksandr
    Budennyy, Semen
    Vorobev, Petr
    Terzija, Vladimir
    Maximov, Yury
    Deka, Deepjyoti
    [J]. SOFTWARE IMPACTS, 2023, 16
  • [27] Data-Driven Chance-Constrained Optimal Gas-Power Flow Calculation: A Bayesian Nonparametric Approach
    Wang, Jingyao
    Wang, Cheng
    Liang, Yile
    Bi, Tianshu
    Shafie-khah, Miadreza
    Catalao, Joao P. S.
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2021, 36 (05) : 4683 - 4698
  • [28] Optimal groundwater remediation design by Chance-Constrained Programming
    Lin, YF
    Sawyer, CS
    [J]. GROUNDWATER: AN ENDANGERED RESOURCE, 1997, : 174 - 179
  • [29] Chance-Constrained OPF in Droop-Controlled Microgrids With Power Flow Routers
    Chen, Tianlun
    Song, Yue
    Hill, David J.
    Lam, Albert Y. S.
    [J]. IEEE TRANSACTIONS ON SMART GRID, 2022, 13 (04) : 2601 - 2613
  • [30] Microgrid optimal scheduling with chance-constrained islanding capability
    Liu, G.
    Starke, M.
    Xiao, B.
    Zhang, X.
    Tomsovic, K.
    [J]. ELECTRIC POWER SYSTEMS RESEARCH, 2017, 145 : 197 - 206