Chance-constrained optimal power flow with non-parametic probability distributions of dynamic line ratings

被引:22
|
作者
Viafora, Nicola [1 ]
Delikaraoglou, Stefanos [2 ]
Pinson, Pierre [1 ]
Holboll, Joachim [1 ]
机构
[1] Tech Univ Denmark, Dept Elect Engn, Lyngby, Denmark
[2] Swiss Fed Inst Technol, EEH Power Syst Lab, Zurich, Switzerland
关键词
Dynamic line rating; Chance constraints; Non-parametric distribution; Wind power; Uncertainty;
D O I
10.1016/j.ijepes.2019.105389
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Compared to Seasonal Line Rating (SLR), Dynamic Line Rating (DLR) allows for higher power flows on overhead transmission lines, depending on the actual weather conditions. Nevertheless, the potential of DLR has to be traded off against the additional uncertainty associated with varying ratings. This paper proposes a DC-Optimal Power Flow (DCOPF) algorithm that accounts for DLR uncertainty by means of Chance-Constraints (CC). The goal is to determine the optimal day-ahead dispatch taking the cost of reserve procurement into account. The key contribution of this paper consists in considering both non-parametric predictive distributions of DLR and the combined wind power uncertainty in the optimization problem. Our results highlight the benefits of DLR in wind-dominated power systems, assuming typical risk aversion levels in the line rating estimation.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] A generalized framework for chance-constrained optimal power flow
    Muehlpfordt, Tillmann
    Faulwasser, Timm
    Hagenmeyer, Veit
    SUSTAINABLE ENERGY GRIDS & NETWORKS, 2018, 16 : 231 - 242
  • [2] Optimal Load Ensemble Control in Chance-Constrained Optimal Power Flow
    Hassan, Ali
    Mieth, Robert
    Chertkov, Michael
    Deka, Deepjyoti
    Dvorkin, Yury
    IEEE TRANSACTIONS ON SMART GRID, 2019, 10 (05) : 5186 - 5195
  • [3] Distributionally Robust Chance-Constrained Optimal Power Flow Assuming Unimodal Distributions With Misspecified Modes
    Li, Bowen
    Jiang, Ruiwei
    Mathieu, Johanna L.
    IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2019, 6 (03): : 1223 - 1234
  • [4] Chance-Constrained AC Optimal Power Flow: A Polynomial Chaos Approach
    Muhlpfordt, Tillmann
    Roald, Line
    Hagenmeyer, Veit
    Faulwasser, Timm
    Misra, Sidhant
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2019, 34 (06) : 4806 - 4816
  • [5] Chance-Constrained AC Optimal Power Flow: Reformulations and Efficient Algorithms
    Roald, Line
    Andersson, Goran
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2018, 33 (03) : 2906 - 2918
  • [6] Importance Sampling Approach to Chance-Constrained DC Optimal Power Flow
    Lukashevich, Aleksander
    Gorchakov, Vyacheslav
    Vorobev, Petr
    Deka, Deepjyoti
    Maximov, Yury
    IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2024, 11 (02): : 928 - 937
  • [7] Chance-Constrained AC Optimal Power Flow for Distribution Systems With Renewables
    Anese, Emiliano Dall'
    Baker, Kyri
    Summers, Tyler
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2017, 32 (05) : 3427 - 3438
  • [8] Chance-constrained optimal power flow based on a linearized network model
    Du, Xiao
    Lin, Xingyu
    Peng, Zhiyun
    Peng, Sui
    Tang, Junjie
    Li, Wenyuan
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2021, 130
  • [9] Asymptotically tight conic approximations for chance-constrained AC optimal power flow
    Fathabad, Abolhassan Mohammadi
    Cheng, Jianqiang
    Pan, Kai
    Yang, Boshi
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2023, 305 (02) : 738 - 753
  • [10] Distributed chance-constrained optimal power flow based on primary frequency control
    Velay, Maxime
    Vinyals, Meritxell
    Besanger, Yvon
    Retiere, Nicolas
    E-ENERGY'18: PROCEEDINGS OF THE 9TH ACM INTERNATIONAL CONFERENCE ON FUTURE ENERGY SYSTEMS, 2018, : 366 - 374