ExpressionPlot: a web-based framework for analysis of RNA-Seq and microarray gene expression data

被引:31
|
作者
Friedman, Brad A. [1 ,2 ,3 ]
Maniatis, Tom [4 ]
机构
[1] Harvard Univ, Dept Mol & Cell Biol, Cambridge, MA 02138 USA
[2] MIT, Koch Inst Integrat Canc Res, Cambridge, MA 02139 USA
[3] Genentech Inc, Dept Bioinformat & Computat Biol, San Francisco, CA 94080 USA
[4] Columbia Univ Coll Phys & Surg, Dept Biochem & Mol Biophys, New York, NY 10032 USA
来源
GENOME BIOLOGY | 2011年 / 12卷 / 07期
关键词
DIFFERENTIAL EXPRESSION; NORMALIZATION;
D O I
10.1186/gb-2011-12-7-r69
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
RNA-Seq and microarray platforms have emerged as important tools for detecting changes in gene expression and RNA processing in biological samples. We present ExpressionPlot, a software package consisting of a default back end, which prepares raw sequencing or Affymetrix microarray data, and a web-based front end, which offers a biologically centered interface to browse, visualize, and compare different data sets. Download and installation instructions, a user's manual, discussion group, and a prototype are available at http://expressionplot.com/.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] ASAP: a web-based platform for the analysis and interactive visualization of single-cell RNA-seq data
    Gardeux, Vincent
    David, Fabrice P. A.
    Shajkofci, Adrian
    Schwalie, Petra C.
    Deplancke, Bart
    BIOINFORMATICS, 2017, 33 (19) : 3123 - 3125
  • [12] Differential gene expression analysis using coexpression and RNA-Seq data
    Yang, Ei-Wen
    Girke, Thomas
    Jiang, Tao
    BIOINFORMATICS, 2013, 29 (17) : 2153 - 2161
  • [13] Comparing Bioinformatic Gene Expression Profiling Methods: Microarray and RNA-Seq
    Mantione, Kirk J.
    Kream, Richard M.
    Kuzelova, Hana
    Ptacek, Radek
    Raboch, Jiri
    Samuel, Joshua M.
    Stefano, George B.
    MEDICAL SCIENCE MONITOR BASIC RESEARCH, 2014, 20 : 138 - 141
  • [14] Parametric analysis of RNA-seq expression data
    Konishi, Tomokazu
    GENES TO CELLS, 2016, 21 (06) : 639 - 647
  • [15] On Differential Gene Expression Using RNA-Seq Data
    Lee, Juhee
    Ji, Yuan
    Liang, Shoudan
    Cai, Guoshuai
    Mueller, Peter
    CANCER INFORMATICS, 2011, 10 : 205 - 215
  • [16] SC1: A web-based single cell RNA-seq analysis pipeline
    Moussa, Marmar
    Mandoiu, Ion I.
    2018 IEEE 8TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL ADVANCES IN BIO AND MEDICAL SCIENCES (ICCABS), 2018,
  • [17] Bootstrap-based differential gene expression analysis for RNA-Seq data with and without replicates
    Sahar Al Seesi
    Yvette Temate Tiagueu
    Alexander Zelikovsky
    Ion I Măndoiu
    BMC Genomics, 15
  • [18] Bootstrap-based differential gene expression analysis for RNA-Seq data with and without replicates
    Al Seesi, Sahar
    Tiagueu, Yvette Temate
    Zelikovsky, Alexander
    Mandoiu, Ion I.
    BMC GENOMICS, 2014, 15
  • [19] SC1: A Tool for Interactive Web-Based Single-Cell RNA-Seq Data Analysis
    Moussa, Marmar
    Mandoiu, Ion I.
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2021, 28 (08) : 820 - 841
  • [20] Empirical Bayes Analysis of RNA-seq Data for Detection of Gene Expression Heterosis
    Jarad Niemi
    Eric Mittman
    Will Landau
    Dan Nettleton
    Journal of Agricultural, Biological, and Environmental Statistics, 2015, 20 : 614 - 628