ExpressionPlot: a web-based framework for analysis of RNA-Seq and microarray gene expression data

被引:31
|
作者
Friedman, Brad A. [1 ,2 ,3 ]
Maniatis, Tom [4 ]
机构
[1] Harvard Univ, Dept Mol & Cell Biol, Cambridge, MA 02138 USA
[2] MIT, Koch Inst Integrat Canc Res, Cambridge, MA 02139 USA
[3] Genentech Inc, Dept Bioinformat & Computat Biol, San Francisco, CA 94080 USA
[4] Columbia Univ Coll Phys & Surg, Dept Biochem & Mol Biophys, New York, NY 10032 USA
来源
GENOME BIOLOGY | 2011年 / 12卷 / 07期
关键词
DIFFERENTIAL EXPRESSION; NORMALIZATION;
D O I
10.1186/gb-2011-12-7-r69
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
RNA-Seq and microarray platforms have emerged as important tools for detecting changes in gene expression and RNA processing in biological samples. We present ExpressionPlot, a software package consisting of a default back end, which prepares raw sequencing or Affymetrix microarray data, and a web-based front end, which offers a biologically centered interface to browse, visualize, and compare different data sets. Download and installation instructions, a user's manual, discussion group, and a prototype are available at http://expressionplot.com/.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Increased comparability between RNA-Seq and microarray data by utilization of gene sets
    van der Kloet, Frans M.
    Buurmans, Jeroen
    Jonker, Martijs J.
    Smilde, Age K.
    Westerhuis, Johan A.
    PLOS COMPUTATIONAL BIOLOGY, 2020, 16 (09)
  • [32] Differential expression analysis for paired RNA-seq data
    Chung, Lisa M.
    Ferguson, John P.
    Zheng, Wei
    Qian, Feng
    Bruno, Vincent
    Montgomery, Ruth R.
    Zhao, Hongyu
    BMC BIOINFORMATICS, 2013, 14 : 110
  • [33] Deep Learning to Analyze RNA-Seq Gene Expression Data
    Urda, D.
    Montes-Torres, J.
    Moreno, F.
    Franco, L.
    Jerez, J. M.
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2017, PT II, 2017, 10306 : 50 - 59
  • [34] Differential expression analysis for paired RNA-seq data
    Lisa M Chung
    John P Ferguson
    Wei Zheng
    Feng Qian
    Vincent Bruno
    Ruth R Montgomery
    Hongyu Zhao
    BMC Bioinformatics, 14
  • [35] Probe Region Expression Estimation for RNA-Seq Data for Improved Microarray Comparability
    Uziela, Karolis
    Honkela, Antti
    PLOS ONE, 2015, 10 (05):
  • [36] Comparison between RNA-Seq and Affymetrix gene expression data
    Fumagalli, D.
    Haibe-Kains, B.
    Michiels, S.
    Brown, D. N.
    Gacquer, D.
    Majjaj, S.
    Salgado, R.
    Larsimont, D.
    Detour, V.
    Piccart, M.
    Sotiriou, C.
    Desmedt, C.
    CANCER RESEARCH, 2012, 72
  • [37] Web-based bioinformatics workflows for end-to-end RNA-seq data computation and analysis in agricultural animal species
    Li, Weizhong
    Richter, R. Alexander
    Jung, Yunsup
    Zhu, Qiyun
    Li, Robert W.
    BMC GENOMICS, 2016, 17
  • [38] Web-based bioinformatics workflows for end-to-end RNA-seq data computation and analysis in agricultural animal species
    Weizhong Li
    R. Alexander Richter
    Yunsup Jung
    Qiyun Zhu
    Robert W. Li
    BMC Genomics, 17
  • [39] VAMPIRE microarray suite: a web-based platform for the interpretation of gene expression data
    Hsiao, A
    Ideker, T
    Olefsky, JM
    Subramaniam, S
    NUCLEIC ACIDS RESEARCH, 2005, 33 : W627 - W632
  • [40] GENE-Counter: A Computational Pipeline for the Analysis of RNA-Seq Data for Gene Expression Differences
    Cumbie, Jason S.
    Kimbrel, Jeffrey A.
    Di, Yanming
    Schafer, Daniel W.
    Wilhelm, Larry J.
    Fox, Samuel E.
    Sullivan, Christopher M.
    Curzon, Aron D.
    Carrington, James C.
    Mockler, Todd C.
    Chang, Jeff H.
    PLOS ONE, 2011, 6 (10):