On Differential Gene Expression Using RNA-Seq Data

被引:12
|
作者
Lee, Juhee [1 ]
Ji, Yuan [1 ]
Liang, Shoudan [2 ]
Cai, Guoshuai [2 ]
Mueller, Peter [3 ]
机构
[1] UTMD Anderson Canc Ctr, Dept Biostat, Houston, TX 77030 USA
[2] UTMD Anderson Canc Ctr, Dept Bioinformat & Computat Biol, Houston, TX USA
[3] UT Austin, Dept Math, Austin, TX USA
关键词
clustering; false discovery rate; mixture models; next-generation sequencing;
D O I
10.4137/CIN.S7473
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Motivation: RNA-Seq is a novel technology that provides read counts of RNA fragments in each gene, including the mapped positions of each read within each gene. Besides many other applications it can be used to detect differentially expressed genes. Most published methods collapse the position-level read data into a single gene-specific expression measurement. Statistical inference proceeds by modeling these gene-level expression measurements. Results: We present a Bayesian method of calling differential expression (BM-DE) that directly models the position-level read counts. We demonstrate the potential advantage of the BM-DE method compared to existing approaches that rely on gene-level aggregate data. An important additional feature of the proposed approach is that BM-DE can be used to analyze RNA-Seq data from experiments without biological replicates. This becomes possible since the approach works with multiple position-level read counts for each gene. We demonstrate the importance of modeling for position-level read counts with a yeast data set and a simulation study. Availability: A public domain R package is available from http://odin.mdacc.tmc.edu/similar to ylji/BMDE/.
引用
收藏
页码:205 / 215
页数:11
相关论文
共 50 条
  • [1] Differential gene expression analysis using coexpression and RNA-Seq data
    Yang, Ei-Wen
    Girke, Thomas
    Jiang, Tao
    [J]. BIOINFORMATICS, 2013, 29 (17) : 2153 - 2161
  • [2] Bayesian Hierarchical Model for Differential Gene Expression Using RNA-Seq Data
    Lee J.
    Ji Y.
    Liang S.
    Cai G.
    Müller P.
    [J]. Statistics in Biosciences, 2015, 7 (1) : 48 - 67
  • [3] Comparative studies of differential gene calling using RNA-Seq data
    Ximeng Zheng
    Etsuko N Moriyama
    [J]. BMC Bioinformatics, 14
  • [4] Comparative studies of differential gene calling using RNA-Seq data
    Zheng, Ximeng
    Moriyama, Etsuko N.
    [J]. BMC BIOINFORMATICS, 2013, 14
  • [5] Identifying suitable tools for variant detection and differential gene expression using RNA-seq data
    Dharshini, S. Akila Parvathy
    Taguchi, Y-H
    Gromiha, M. Michael
    [J]. GENOMICS, 2020, 112 (03) : 2166 - 2172
  • [6] Differential Expression Analysis in RNA-seq Data Using a Geometric Approach
    Tambonis, Tiago
    Boareto, Marcelo
    Leite, Vitor B. P.
    [J]. JOURNAL OF COMPUTATIONAL BIOLOGY, 2018, 25 (11) : 1257 - 1265
  • [7] Robustness of differential gene expression analysis of RNA-seq
    Stupnikov, A.
    McInerney, C. E.
    Savage, K. I.
    McIntosh, S. A.
    Emmert-Streib, F.
    Kennedy, R.
    Salto-Tellez, M.
    Prise, K. M.
    McArt, D. G.
    [J]. COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 3470 - 3481
  • [8] Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data
    Franck Rapaport
    Raya Khanin
    Yupu Liang
    Mono Pirun
    Azra Krek
    Paul Zumbo
    Christopher E Mason
    Nicholas D Socci
    Doron Betel
    [J]. Genome Biology, 14
  • [9] Differential expression analysis for paired RNA-seq data
    Chung, Lisa M.
    Ferguson, John P.
    Zheng, Wei
    Qian, Feng
    Bruno, Vincent
    Montgomery, Ruth R.
    Zhao, Hongyu
    [J]. BMC BIOINFORMATICS, 2013, 14 : 110
  • [10] Differential gene expression with lossy compression of quality scores in RNA-seq data
    Hernandez-Lopez, Ana A.
    Voges, Jan
    Alberti, Claudio
    Mattavelli, Marco
    Ostermann, Joern
    [J]. 2017 DATA COMPRESSION CONFERENCE (DCC), 2017, : 444 - 444