Monte Carlo approximation of bootstrap variances

被引:64
|
作者
Booth, JG [1 ]
Sarkar, S
机构
[1] Univ Florida, Dept Stat, Gainesville, FL 32611 USA
[2] Eli Lilly & Co, Lilly Corp Ctr, Lilly Res Labs, Indianapolis, IN 46285 USA
[3] Colorado State Univ, Dept Stat, Ft Collins, CO 80523 USA
来源
AMERICAN STATISTICIAN | 1998年 / 52卷 / 04期
关键词
coefficient of variation; relative error; resample size;
D O I
10.2307/2685441
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
It is widely believed that the number of resamples required for bootstrap variance estimation is relatively small. An argument based on the unconditional coefficient of variation of the Monte Carlo approximation, suggests that as few as 25 resamples will give reasonable results. In this article we argue that the number of resamples should, in fact, be determined by the conditional coefficient of variation, involving only resampling variability. Our conditional analysis is founded on a belief that Monte Carlo error should not be allowed to determine the conclusions of a statistical analysis and indicates that approximately 800 resamples are required for this purpose. The argument can be generalized to the multivariate setting and a simple formula is given For determining a lower bound on the number of resamples required to approximate an m-dimensional bootstrap variance-covariance matrix.
引用
收藏
页码:354 / 357
页数:4
相关论文
共 50 条
  • [41] Markov chain Monte Carlo using an approximation
    Christen, JA
    Fox, C
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2005, 14 (04) : 795 - 810
  • [42] A bootstrap test for equality of variances
    Cahoy, Dexter O.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (10) : 2306 - 2316
  • [43] Reliability and Accuracy of Bootstrap and Monte Carlo Methods for Demand Distribution Modeling
    Razu, Swithin S.
    Takai, Shun
    [J]. PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2011, VOL 9, 2012, : 781 - 787
  • [44] How many subjects? A Monte Carlo bootstrap simulation for functional imaging
    Chen, LW
    Zhao, Z
    Medoff, D
    Holcomb, HH
    Lahti, AC
    Tamminga, CA
    [J]. SCHIZOPHRENIA RESEARCH, 1997, 24 (1-2) : 164 - 164
  • [45] Monte Carlo studies of bootstrap variability in ROC analysis with data dependency
    Wu, Jin Chu
    Martin, Alvin F.
    Kacker, Raghu N.
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2019, 48 (02) : 317 - 333
  • [46] Bootstrap Monte Carlo Simulation of Reliability and Confidence Level with Periodical Maintenance
    Mueller, Frank
    Zeiler, Peter
    Bertsche, Bernd
    [J]. FORSCHUNG IM INGENIEURWESEN-ENGINEERING RESEARCH, 2017, 81 (04): : 383 - 393
  • [47] MONTE-CARLO RENORMALIZATION-GROUP STUDY OF BOOTSTRAP PERCOLATION
    KHAN, MA
    GOULD, H
    CHALUPA, J
    [J]. JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1985, 18 (09): : L223 - L228
  • [48] On Bootstrap Inference for Quantile Regression Panel Data: A Monte Carlo Study
    Galvao, Antonio F.
    Montes-Rojas, Gabriel
    [J]. ECONOMETRICS, 2015, 3 (03): : 654 - 666
  • [49] Monte Carlo δf simulation of the bootstrap current in the presence of a magnetic island
    Poli, E
    Peeters, AG
    Bergmann, A
    Günter, S
    Pinches, SD
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2003, 45 (02) : 71 - 87
  • [50] Cloud MapReduce for Monte Carlo bootstrap applied to Metabolic Flux Analysis
    Dalman, Tolga
    Doernemann, Tim
    Juhnke, Ernst
    Weitzel, Michael
    Wiechert, Wolfgang
    Noeh, Katharina
    Freisleben, Bernd
    [J]. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2013, 29 (02): : 582 - 590