Monte Carlo approximation of bootstrap variances

被引:64
|
作者
Booth, JG [1 ]
Sarkar, S
机构
[1] Univ Florida, Dept Stat, Gainesville, FL 32611 USA
[2] Eli Lilly & Co, Lilly Corp Ctr, Lilly Res Labs, Indianapolis, IN 46285 USA
[3] Colorado State Univ, Dept Stat, Ft Collins, CO 80523 USA
来源
AMERICAN STATISTICIAN | 1998年 / 52卷 / 04期
关键词
coefficient of variation; relative error; resample size;
D O I
10.2307/2685441
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
It is widely believed that the number of resamples required for bootstrap variance estimation is relatively small. An argument based on the unconditional coefficient of variation of the Monte Carlo approximation, suggests that as few as 25 resamples will give reasonable results. In this article we argue that the number of resamples should, in fact, be determined by the conditional coefficient of variation, involving only resampling variability. Our conditional analysis is founded on a belief that Monte Carlo error should not be allowed to determine the conclusions of a statistical analysis and indicates that approximately 800 resamples are required for this purpose. The argument can be generalized to the multivariate setting and a simple formula is given For determining a lower bound on the number of resamples required to approximate an m-dimensional bootstrap variance-covariance matrix.
引用
收藏
页码:354 / 357
页数:4
相关论文
共 50 条
  • [21] On the power of bootstrap tests for stationarity: a Monte Carlo comparison
    Gulesserian, Sevan G.
    Kejriwal, Mohitosh
    [J]. EMPIRICAL ECONOMICS, 2014, 46 (03) : 973 - 998
  • [22] Monte Carlo oversampling algorithm based on Bootstrap method
    Hou, Binjie
    Chen, Gang
    [J]. 2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 2537 - 2542
  • [23] On the power of bootstrap tests for stationarity: a Monte Carlo comparison
    Sevan G. Gulesserian
    Mohitosh Kejriwal
    [J]. Empirical Economics, 2014, 46 : 973 - 998
  • [24] Bootstrap Monte Carlo with adaptive stratification for power estimation
    Huang, HL
    Jou, JY
    [J]. JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2002, 11 (04) : 333 - 350
  • [25] Monte Carlo local likelihood approximation
    Jeon, Minjeong
    Kaufman, Cari
    Rabe-Hesketh, Sophia
    [J]. BIOSTATISTICS, 2019, 20 (01) : 164 - 179
  • [26] Stochastic approximation in Monte Carlo computation
    Liang, Faming
    Liu, Chuanhai
    Carroll, Raymond J.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2007, 102 (477) : 305 - 320
  • [27] An Overview of Stochastic Approximation Monte Carlo
    Liang, Faming
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2014, 6 (04): : 240 - 254
  • [28] A Monte-Carlo AIXI Approximation
    Veness, Joel
    Kee Siong Ng
    Hutter, Marcus
    Uther, William
    Silver, David
    [J]. JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2011, 40 : 95 - 142
  • [29] Multilevel Monte Carlo Approximation of Functions
    Krumscheid, S.
    Nobile, F.
    [J]. SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2018, 6 (03): : 1256 - 1293
  • [30] Stochastic approximation Hamiltonian Monte Carlo
    Yun, Jonghyun
    Shin, Minsuk
    Hoon Jin, Ick
    Liang, Faming
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2020, 90 (17) : 3135 - 3156