DeepRibSt: a multi-feature convolutional neural network for predicting ribosome stalling

被引:1
|
作者
Zhang, Yuan [1 ,2 ]
Zhang, Sai [3 ]
He, Xizhi [2 ]
Lu, Jing [2 ]
Gao, Xieping [2 ,4 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Peoples R China
[2] Xiangtan Univ, Minist Educ, Key Lab Intelligent Comp & Informat Proc, Xiangtan 411105, Peoples R China
[3] Stanford Univ, Sch Med, Dept Genet, Stanford, CA 94305 USA
[4] Xiangnan Univ, Coll Med Imaging & Inspect, Chenzhou 423000, Peoples R China
基金
中国国家自然科学基金;
关键词
Ribosome stalling; Prediction; Multi-feature; Deep learning; Convolutional neural networks; SYNONYMOUS MUTATIONS; TRANSLATION; RNA; PROTEIN; DYSREGULATION; SEQUENCE; DATABASE; REVEALS;
D O I
10.1007/s11042-020-09598-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Ribosomes are a kind of organelle in cells, which are mainly involved in the translation process of genetic materials, but the underlying mechanisms associated with ribosome stalling are not fully understood. Thanks to the development of biological experimental techniques, many ribosome footprintings are generated, which can help us to study ribosome stalling. Effectively obtaining a precise ribosome stalling site will be helpful for the treatment of the related diseases, however there is still much room for the improvement of ribosome stalling prediction. In this study, we propose a new deep neural network model named DeepRibSt for the prediction of ribosome stalling sites. We first process the ribosome footprinting data to the training set. Then three new features, including evolutionary conservation, hydrophobicity, and amino dissociation constant, along with the previous sequence features, are extracted as input to the network. To improve the performance of the algorithm in ribosome stalling prediction, we use two convolutional layers and three fully connected layers to design a new network architecture. To verify the validity of our proposed DeepRibSt, we compare DeepRibSt with four popular deep neural networks, i.e., AlexNet, LeNet, ResNet, and LSTM on human (i.e., Battle2015 and Stumpf13) and yeast (i.e., Pop2014, Young15, and Brar12) data. To further demonstrate the effectiveness of DeepRibS, we compare DeepRibSt with the state-of-the-art method. The experimental results show that DeepRibSt outperforms all other methods and achieves the state-of-the-art performance in accuracy, recall, specificity, F1-score, and the area under the receiver operating characteristic curve (AUC).
引用
收藏
页码:17239 / 17255
页数:17
相关论文
共 50 条
  • [11] A new multi-feature fusion based convolutional neural network for facial expression recognition
    Zou, Wei
    Zhang, Dong
    Lee, Dah-Jye
    APPLIED INTELLIGENCE, 2022, 52 (03) : 2918 - 2929
  • [12] Defect identification in adhesive structures using multi-Feature fusion convolutional neural network
    Xiong, Weihua
    Ren, Jiaojiao
    Zhang, Jiyang
    Zhang, Dandan
    Gu, Jian
    Xue, Junwen
    Chen, Qi
    Li, Lijuan
    FRONTIERS IN PHYSICS, 2023, 10
  • [13] A new multi-feature fusion based convolutional neural network for facial expression recognition
    Wei Zou
    Dong Zhang
    Dah-Jye Lee
    Applied Intelligence, 2022, 52 : 2918 - 2929
  • [14] Multi-feature Counting of Dense Crowd Image Based on Multi-column Convolutional Neural Network
    Gong, Songchenchen
    Bourennane, El-Bay
    Gao, Junyu
    2020 5TH INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION SYSTEMS (ICCCS 2020), 2020, : 215 - 219
  • [15] A multi-feature fusion algorithm for driver fatigue detection based on a lightweight convolutional neural network
    Wangfeng Cheng
    Xuanyao Wang
    Bangguo Mao
    The Visual Computer, 2024, 40 : 2419 - 2441
  • [16] Research on rectal tumor identification method by convolutional neural network based on multi-feature fusion
    Liang Z.
    Wu J.
    Wu, Jiansheng (ssewu@163.com), 1600, University of Split (34): : 31 - 41
  • [17] M-FANet: Multi-Feature Attention Convolutional Neural Network for Motor Imagery Decoding
    Qin, Yiyang
    Yang, Banghua
    Ke, Sixiong
    Liu, Peng
    Rong, Fenqi
    Xia, Xinxing
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2024, 32 : 401 - 411
  • [18] Detecting Abnormal Driving Behaviors by Smartphone Sensors Based on Multi-Feature Convolutional Neural Network
    Wang, Renjia
    Xie, Fei
    Zhang, Bin
    Liu, Wenhui
    Qian, Weixing
    Xian, Wang
    PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 6639 - 6644
  • [19] A multi-feature fusion algorithm for driver fatigue detection based on a lightweight convolutional neural network
    Cheng, Wangfeng
    Wang, Xuanyao
    Mao, Bangguo
    VISUAL COMPUTER, 2024, 40 (04): : 2419 - 2441
  • [20] Phishing Detection Based on Multi-Feature Neural Network
    Yu, Shuaicong
    An, Changqing
    Yu, Tao
    Zhao, Ziyi
    Li, Tianshu
    Wang, Jilong
    2022 IEEE INTERNATIONAL PERFORMANCE, COMPUTING, AND COMMUNICATIONS CONFERENCE, IPCCC, 2022,