M-FANet: Multi-Feature Attention Convolutional Neural Network for Motor Imagery Decoding

被引:2
|
作者
Qin, Yiyang [1 ]
Yang, Banghua [2 ,3 ]
Ke, Sixiong [1 ]
Liu, Peng [1 ]
Rong, Fenqi [1 ]
Xia, Xinxing [1 ]
机构
[1] Shanghai Univ, Sch Mech & Elect Engn & Automat, Shanghai 200444, Peoples R China
[2] Shanghai Univ, Res Ctr Brain Comp Engn, Sch Mechatron Engn & Automat, Sch Med, Shanghai 200444, Peoples R China
[3] Minist Educ, Engn Res Ctr Tradit Chinese Med Intelligent Rehabi, Shanghai 201203, Peoples R China
关键词
Brain-computer interface; motor imagery; convolutional neural networks; multi-feature attention; BRAIN-COMPUTER INTERFACES; EEG;
D O I
10.1109/TNSRE.2024.3351863
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Motor imagery (MI) decoding methods are pivotal in advancing rehabilitation and motor control research. Effective extraction of spectral-spatial-temporal features is crucial for MI decoding from limited and low signal-to-noise ratio electroencephalogram (EEG) signal samples based on brain-computer interface (BCI). In this paper, we propose a lightweight Multi-Feature Attention Neural Network (M-FANet) for feature extraction and selection of multi-feature data. M-FANet employs several unique attention modules to eliminate redundant information in the frequency domain, enhance local spatial feature extraction and calibrate feature maps. We introduce a training method called Regularized Dropout (R-Drop) to address training-inference inconsistency caused by dropout and improve the model's generalization capability. We conduct extensive experiments on the BCI Competition IV 2a (BCIC-IV-2a) dataset and the 2019 World robot conference contest-BCI Robot Contest MI (WBCIC-MI) dataset. M-FANet achieves superior performance compared to state-of-the-art MI decoding methods, with 79.28% 4-class classification accuracy (kappa: 0.7259) on the BCIC-IV-2a dataset and 77.86% 3-class classification accuracy (kappa: 0.6650) on the WBCIC-MI dataset. The application of multi-feature attention modules and R-Drop in our lightweight model significantly enhances its performance, validated through comprehensive ablation experiments and visualizations.
引用
收藏
页码:401 / 411
页数:11
相关论文
共 50 条
  • [1] Analysis and intention recognition of motor imagery EEG signals based on multi-feature convolutional neural network
    He, Qun
    Shao, Dandan
    Wang, Yuwen
    Zhang, Yuanyuan
    Xie, Ping
    [J]. Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2020, 41 (01): : 138 - 146
  • [2] A channel-mixing convolutional neural network for motor imagery EEG decoding and feature visualization
    Ma, Weifeng
    Gong, Yifei
    Zhou, Gongxue
    Liu, Yang
    Zhang, Lei
    He, Boxian
    [J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 70
  • [3] A Multi-feature Fusion Transformer Neural Network for Motor Imagery EEG Signal Classification
    Hu, Zhangfang
    He, Lingxiao
    Wu, Haoze
    [J]. ENGINEERING LETTERS, 2023, 31 (04) : 1822 - 1831
  • [4] A Multi-Domain Convolutional Neural Network for EEG-Based Motor Imagery Decoding
    Zhi, Hongyi
    Yu, Zhuliang
    Yu, Tianyou
    Gu, Zhenghui
    Yang, Jian
    [J]. IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2023, 31 : 3988 - 3998
  • [5] Manifold attention-enhanced multi-domain convolutional network for decoding motor imagery intention
    Lu, Bin
    Huang, Xiaodong
    Chen, Junxiang
    Fu, Rongrong
    Wen, Guilin
    [J]. KNOWLEDGE-BASED SYSTEMS, 2024, 296
  • [6] A Multi-Feature Fusion Model Based on Denoising Convolutional Neural Network and Attention Mechanism for Image Classification
    Zhang, Jingsi
    Yu, Xiaosheng
    Lei, Xiaoliang
    Wu, Chengdong
    [J]. INTERNATIONAL JOURNAL OF SWARM INTELLIGENCE RESEARCH, 2023, 14 (02)
  • [7] Convolutional neural network based on temporal-spatial feature learning for motor imagery electroencephalogram signal decoding
    Chu, Yaqi
    Zhu, Bo
    Zhao, Xingang
    Zhao, Yiwen
    [J]. Shengwu Yixue Gongchengxue Zazhi/Journal of Biomedical Engineering, 2021, 38 (01): : 1 - 9
  • [8] Convolutional neural network and multi-feature fusion for automatic modulation classification
    Wu, Hao
    Li, Yaxing
    Zhou, Liang
    Meng, Jin
    [J]. ELECTRONICS LETTERS, 2019, 55 (16) : 895 - +
  • [9] DeepRibSt: a multi-feature convolutional neural network for predicting ribosome stalling
    Yuan Zhang
    Sai Zhang
    Xizhi He
    Jing Lu
    Xieping Gao
    [J]. Multimedia Tools and Applications, 2021, 80 : 17239 - 17255
  • [10] DeepRibSt: a multi-feature convolutional neural network for predicting ribosome stalling
    Zhang, Yuan
    Zhang, Sai
    He, Xizhi
    Lu, Jing
    Gao, Xieping
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (11) : 17239 - 17255