DeepRibSt: a multi-feature convolutional neural network for predicting ribosome stalling

被引:1
|
作者
Zhang, Yuan [1 ,2 ]
Zhang, Sai [3 ]
He, Xizhi [2 ]
Lu, Jing [2 ]
Gao, Xieping [2 ,4 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Peoples R China
[2] Xiangtan Univ, Minist Educ, Key Lab Intelligent Comp & Informat Proc, Xiangtan 411105, Peoples R China
[3] Stanford Univ, Sch Med, Dept Genet, Stanford, CA 94305 USA
[4] Xiangnan Univ, Coll Med Imaging & Inspect, Chenzhou 423000, Peoples R China
基金
中国国家自然科学基金;
关键词
Ribosome stalling; Prediction; Multi-feature; Deep learning; Convolutional neural networks; SYNONYMOUS MUTATIONS; TRANSLATION; RNA; PROTEIN; DYSREGULATION; SEQUENCE; DATABASE; REVEALS;
D O I
10.1007/s11042-020-09598-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Ribosomes are a kind of organelle in cells, which are mainly involved in the translation process of genetic materials, but the underlying mechanisms associated with ribosome stalling are not fully understood. Thanks to the development of biological experimental techniques, many ribosome footprintings are generated, which can help us to study ribosome stalling. Effectively obtaining a precise ribosome stalling site will be helpful for the treatment of the related diseases, however there is still much room for the improvement of ribosome stalling prediction. In this study, we propose a new deep neural network model named DeepRibSt for the prediction of ribosome stalling sites. We first process the ribosome footprinting data to the training set. Then three new features, including evolutionary conservation, hydrophobicity, and amino dissociation constant, along with the previous sequence features, are extracted as input to the network. To improve the performance of the algorithm in ribosome stalling prediction, we use two convolutional layers and three fully connected layers to design a new network architecture. To verify the validity of our proposed DeepRibSt, we compare DeepRibSt with four popular deep neural networks, i.e., AlexNet, LeNet, ResNet, and LSTM on human (i.e., Battle2015 and Stumpf13) and yeast (i.e., Pop2014, Young15, and Brar12) data. To further demonstrate the effectiveness of DeepRibS, we compare DeepRibSt with the state-of-the-art method. The experimental results show that DeepRibSt outperforms all other methods and achieves the state-of-the-art performance in accuracy, recall, specificity, F1-score, and the area under the receiver operating characteristic curve (AUC).
引用
收藏
页码:17239 / 17255
页数:17
相关论文
共 50 条
  • [21] Sequence Neural Network for Recommendation with Multi-feature Fusion
    Gu, Xiao
    Zhao, Haiping
    Jian, Ling
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 210
  • [22] A Multi-Feature Fusion Model Based on Denoising Convolutional Neural Network and Attention Mechanism for Image Classification
    Zhang, Jingsi
    Yu, Xiaosheng
    Lei, Xiaoliang
    Wu, Chengdong
    INTERNATIONAL JOURNAL OF SWARM INTELLIGENCE RESEARCH, 2023, 14 (02)
  • [23] Atrial fibrillation detection based on multi-feature extraction and convolutional neural network for processing ECG signals
    Chen, Xianjie
    Cheng, Zhaoyun
    Wang, Sheng
    Lu, Guoqing
    Xv, Gaojun
    Liu, Qianjin
    Zhu, Xiliang
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2021, 202
  • [24] Serum Raman spectroscopy combined with a multi-feature fusion convolutional neural network diagnosing thyroid dysfunction
    Chen, Hao
    Chen, Cheng
    Wang, Hang
    Chen, Chen
    Guo, Zhiqi
    Tong, Dongni
    Li, Hongmei
    Li, Hongyi
    Si, Rumeng
    Lai, Huicheng
    Lv, Xiaoyi
    OPTIK, 2020, 216
  • [25] Analysis and intention recognition of motor imagery EEG signals based on multi-feature convolutional neural network
    He Q.
    Shao D.
    Wang Y.
    Zhang Y.
    Xie P.
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2020, 41 (01): : 138 - 146
  • [26] Inspection of Welding Defect Based on Multi-feature Fusion and a Convolutional Network
    Yang, Lei
    Fan, Junfeng
    Huo, Benyan
    Liu, Yanhong
    JOURNAL OF NONDESTRUCTIVE EVALUATION, 2021, 40 (04)
  • [27] Magnetic Anomaly Detection Using One-Dimensional Convolutional Neural Network With Multi-Feature Fusion
    Fan, Liming
    Hu, Hao
    Zhang, Xiaojun
    Wang, Huigang
    Kang, Chong
    IEEE SENSORS JOURNAL, 2022, 22 (12) : 11637 - 11643
  • [28] Inspection of Welding Defect Based on Multi-feature Fusion and a Convolutional Network
    Lei Yang
    Junfeng Fan
    Benyan Huo
    Yanhong Liu
    Journal of Nondestructive Evaluation, 2021, 40
  • [29] Multi-Feature Fusion Human Behavior Recognition Algorithm Based on Convolutional Neural Network and Long Short Term Memory Neural Network
    Huang Youwen
    Wan Chaolun
    Feng Heng
    LASER & OPTOELECTRONICS PROGRESS, 2019, 56 (07)
  • [30] A Multi-Feature Convolution Neural Network for Automatic Flower Recognition
    Ran, Juan
    Shi, Yu
    Yu, Jinhao
    Li, Delong
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2021, 30 (15)