Single cell transcriptomics and epigenomic analyses identify mechanisms underlying functional maturation of astrocytes

被引:0
|
作者
Lattke, M. [1 ,2 ]
Goldstone, R. [3 ]
Ellis, J. [4 ]
Boeing, S. [5 ,6 ]
Jurado-Arjona, J. [7 ]
Marichal, N. [7 ]
MacRae, J. [4 ]
Berninger, B. [7 ,8 ]
Guillemot, F. [1 ]
机构
[1] Francis Crick Inst, Neural Stem Cell Biol Lab, London, England
[2] Imperial Coll London, Dept Brain Sci, London, England
[3] Francis Crick Inst, Adv Sequencing Facil, London, England
[4] Francis Crick Inst, Metabol Sci Technol Platform, London, England
[5] Francis Crick Inst, Software Dev & Machine Learning Team, London, England
[6] Francis Crick Inst, Bioinformat & Biostat, London, England
[7] Kings Coll London, Inst Psychiat Psychol & Neurosci, Ctr Dev Neurobiol, London, England
[8] Kings Coll London, MRC Ctr Neurodev Disorders, London, England
关键词
D O I
暂无
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
SY 10-03
引用
收藏
页码:51 / 53
页数:2
相关论文
共 50 条
  • [21] Comparative transcriptomic and epigenomic analyses to identify the cold resistance-associated genes and disclose the regulatory mechanisms in tilapias
    Song, Guili
    Liu, Ran
    Chen, Shaoxiong
    Li, Qing
    Cui, Zongbin
    Long, Yong
    AQUACULTURE, 2024, 587
  • [22] Integrated analyses of single-cell transcriptomics identify metastasis-associated myeloid subpopulations in breast cancer lung metastasis
    Huang, Zhen
    Bu, Dawei
    Yang, Nan
    Huang, Wenwen
    Zhang, Liyin
    Li, Xiaoxue
    Ding, Bi-Sen
    FRONTIERS IN IMMUNOLOGY, 2023, 14
  • [23] Transcriptomic characterization of astrocyte differentiation and maturation to identify potential mechanisms restricting the neurogenic potential of mature astrocytes
    Lattke, M.
    Vaga, S.
    Guillemot, F.
    GLIA, 2017, 65 : E119 - E120
  • [24] Single-cell epigenomic variability reveals functional cancer heterogeneity
    Ulrike M. Litzenburger
    Jason D. Buenrostro
    Beijing Wu
    Ying Shen
    Nathan C. Sheffield
    Arwa Kathiria
    William J. Greenleaf
    Howard Y. Chang
    Genome Biology, 18
  • [25] Single-cell epigenomic variability reveals functional cancer heterogeneity
    Litzenburger, Ulrike M.
    Buenrostro, Jason D.
    Wu, Beijing
    Shen, Ying
    Sheffield, Nathan C.
    Kathiria, Arwa
    Greenleaf, William J.
    Chang, Howard Y.
    GENOME BIOLOGY, 2017, 18
  • [26] Integrative analyses identify genes and their functional consequences underlying COVID-19 hospitalization
    Singh, Kritika
    Pathak, Gita
    Miller-Fleming, Tyne
    Wendt, Frank
    Ehsan, Nava
    Hou, Kangcheng
    Johnson, Ruth
    Lu, Zeyun
    Gopalan, Shyamalika
    Yang, Loic
    Mohammadi, Pejman
    Pasaniuc, Bogdan
    Polimanti, Renato
    Davis, Lea
    Mancuso, Nicholas
    MOLECULAR GENETICS AND METABOLISM, 2021, 132 : S215 - S215
  • [27] Single-Cell Transcriptomics of Human Oocytes: Environment-Driven Metabolic Competition and Compensatory Mechanisms During Oocyte Maturation
    Zhao, Hongcui
    Li, Tianjie
    Zhao, Yue
    Tan, Tao
    Liu, Changyu
    Liu, Yali
    Chang, Liang
    Huang, Ning
    Li, Chang
    Fan, Yong
    Yu, Yang
    Li, Rong
    Qiao, Jie
    ANTIOXIDANTS & REDOX SIGNALING, 2019, 30 (04) : 542 - 559
  • [28] Temporal Analyses of Chromatin Accessibility, Dna Methylation and Epigenomic Structure Identify Mechanisms of Locus-specific Regulation in the Heart
    Rosa-garrido, Manuel
    Chapski, Douglas J.
    Cabaj, Maximilian
    Morselli, Marco
    Ren, Shuxun
    Pellegrini, Matteo
    Wang, Yibin
    Vondriska, Thomas M.
    Mason, Rosibel J.
    CIRCULATION, 2020, 142
  • [29] Epigenomic and transcriptomic analyses define core cell types, genes and targetable mechanisms for kidney disease
    Liu, Hongbo
    Doke, Tomohito
    Guo, Dong
    Sheng, Xin
    Ma, Ziyuan
    Park, Joseph
    Vy, Ha My T.
    Nadkarni, Girish N.
    Abedini, Amin
    Miao, Zhen
    Palmer, Matthew
    Voight, Benjamin F.
    Li, Hongzhe
    Brown, Christopher D.
    Ritchie, Marylyn D.
    Shu, Yan
    Susztak, Katalin
    NATURE GENETICS, 2022, 54 (07) : 950 - +
  • [30] Integrated physiological, biochemical, and transcriptomics analyses reveal the underlying mechanisms of high nitrogen use efficiency of black sesame
    Wang, Min
    Wang, Yupeng
    Wang, Xiaohui
    Wei, Guangwei
    Yang, Huiyi
    Yang, Xi
    Shen, Tinghai
    Qu, Huijie
    Fang, Sheng
    Wu, Ziming
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2024, 206