Epigenomic and transcriptomic analyses define core cell types, genes and targetable mechanisms for kidney disease

被引:92
|
作者
Liu, Hongbo [1 ,2 ,3 ]
Doke, Tomohito [1 ,2 ,3 ]
Guo, Dong [4 ]
Sheng, Xin [1 ,2 ,3 ]
Ma, Ziyuan [1 ,2 ,3 ]
Park, Joseph [3 ,5 ]
Vy, Ha My T. [6 ,7 ]
Nadkarni, Girish N. [6 ,7 ,8 ,9 ]
Abedini, Amin [1 ,2 ,3 ]
Miao, Zhen [1 ,2 ,3 ]
Palmer, Matthew [10 ]
Voight, Benjamin F. [2 ,3 ,11 ,12 ]
Li, Hongzhe [13 ,14 ]
Brown, Christopher D. [3 ]
Ritchie, Marylyn D. [3 ]
Shu, Yan [4 ]
Susztak, Katalin [1 ,2 ,3 ]
机构
[1] Univ Penn, Dept Med, Renal Electrolyte & Hypertens Div, Philadelphia, PA 19104 USA
[2] Univ Penn, Inst Diabet Obes & Metab, Philadelphia, PA 19104 USA
[3] Univ Penn, Dept Genet, Philadelphia, PA 19104 USA
[4] Univ Maryland, Sch Pharm, Dept Pharmaceut Sci, Baltimore, MD 21201 USA
[5] Univ Penn, Inst Biomed Informat, Perelman Sch Med, Philadelphia, PA 19104 USA
[6] Icahn Sch Med Mt Sinai, Dept Med, Div Nephrol, New York, NY 10029 USA
[7] Icahn Sch Med Mt Sinai, Charles Bronfman Inst Personalized Med, New York, NY 10029 USA
[8] Icahn Sch Med Mt Sinai, Hasso Plattner Inst Digital Hlth, New York, NY 10029 USA
[9] Icahn Sch Med Mt Sinai, Mt Sinai Clin Intelligence Ctr, New York, NY 10029 USA
[10] Hosp Univ Penn, Pathol & Lab Med, 3400 Spruce St, Philadelphia, PA 19104 USA
[11] Univ Penn, Dept Syst Pharmacol & Translat Therapeut, Philadelphia, PA 19104 USA
[12] Univ Penn, Inst Translat Med & Therapeut, Philadelphia, PA 19104 USA
[13] Univ Penn, Dept Biostat Epidemiol & Informat, Philadelphia, PA 19104 USA
[14] Univ Penn, Ctr Clin Epidemiol & Biostat, Perelman Sch Med, Philadelphia, PA 19104 USA
关键词
INTEGRATIVE ANALYSIS; RENAL SECRETION; ASSOCIATION; EXPRESSION; ACCUMULATION; DEFICIENCY; MULTIDRUG; THOUSANDS; GENOTYPE; GWAS;
D O I
10.1038/s41588-022-01097-w
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
More than 800 million people suffer from kidney disease, yet the mechanism of kidney dysfunction is poorly understood. In the present study, we define the genetic association with kidney function in 1.5 million individuals and identify 878 (126 new) loci. We map the genotype effect on the methylome in 443 kidneys, transcriptome in 686 samples and single-cell open chromatin in 57,229 kidney cells. Heritability analysis reveals that methylation variation explains a larger fraction of heritability than gene expression. We present a multi-stage prioritization strategy and prioritize target genes for 87% of kidney function loci. We highlight key roles of proximal tubules and metabolism in kidney function regulation. Furthermore, the causal role of SLC47A1 in kidney disease is defined in mice with genetic loss of Slc47a1 and in human individuals carrying loss-of-function variants. Our findings emphasize the key role of bulk and single-cell epigenomic information in translating genome-wide association studies into identifying causal genes, cellular origins and mechanisms of complex traits.
引用
收藏
页码:950 / +
页数:37
相关论文
共 50 条
  • [1] Epigenomic and transcriptomic analyses define core cell types, genes and targetable mechanisms for kidney disease
    Hongbo Liu
    Tomohito Doke
    Dong Guo
    Xin Sheng
    Ziyuan Ma
    Joseph Park
    Ha My T. Vy
    Girish N. Nadkarni
    Amin Abedini
    Zhen Miao
    Matthew Palmer
    Benjamin F. Voight
    Hongzhe Li
    Christopher D. Brown
    Marylyn D. Ritchie
    Yan Shu
    Katalin Susztak
    Nature Genetics, 2022, 54 : 950 - 962
  • [2] Comparative transcriptomic and epigenomic analyses to identify the cold resistance-associated genes and disclose the regulatory mechanisms in tilapias
    Song, Guili
    Liu, Ran
    Chen, Shaoxiong
    Li, Qing
    Cui, Zongbin
    Long, Yong
    AQUACULTURE, 2024, 587
  • [3] A transcriptomic and epigenomic atlas of cell types across the macaque brain
    Chiou, Kenneth L.
    Huang, Xingfan
    Bohlen, Martin O.
    Tremblay, Sebastien
    O'Day, Diana R.
    Spurrell, Cailyn H.
    Gogate, Aishwarya A.
    Zintel, Trisha M.
    Decasien, Alex R.
    Andrews, Madeline G.
    Martinez, Melween I.
    Starita, Lea M.
    Montague, Michael J.
    Platt, Michael L.
    Shendure, Jay
    Snyder-Mackler, Noah
    AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY, 2023, 180 : 30 - 31
  • [4] Integrative epigenomic and transcriptomic analyses of kidney cancers from African Americans and European Americans
    Williams, Heinric
    Mitchell, Khadijah A.
    CANCER EPIDEMIOLOGY BIOMARKERS & PREVENTION, 2020, 29 (06)
  • [5] Comparative transcriptomic and epigenomic analyses elucidate mechanisms regulating Muller glia reprogramming in damaged retinas
    Hyde, David R.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2019, 60 (09)
  • [6] Deconvolution of diverse cell types in the tumor microenvironment by jointly modeling transcriptomic and epigenomic information
    Shi, Alvin H.
    Li, Yue
    Murugadoss, Karthik
    Kellis, Manolis
    CANCER IMMUNOLOGY RESEARCH, 2017, 5 (03)
  • [7] Network-based integrative analysis of single-cell transcriptomic and epigenomic data for cell types
    Wu, Wenming
    Zhang, Wensheng
    Ma, Xiaoke
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (02)
  • [8] Transcriptomic, epigenomic, and spatial metabolomic cell profiling redefines regional human kidney anatomy
    Li, Haikuo
    Li, Dian
    Ledru, Nicolas
    Xuanyuan, Qiao
    Wu, Haojia
    Asthana, Amish
    Byers, Lori N.
    Tullius, Stefan G.
    Orlando, Giuseppe
    Waikar, Sushrut S.
    Humphreys, Benjamin D.
    CELL METABOLISM, 2024, 36 (05) : 1105 - 1125.e10
  • [9] HARNESSING TRANSCRIPTOMIC PROFILING TO DEFINE THE BIOLOGICAL MECHANISMS CONTRIBUTING TO PERIANAL FISTULIZING DISEASE
    Constable, Laura E.
    Iqbal, Nusrat
    Cozzetto, Domenico
    Hart, Ailsa
    Tozer, Philip
    Powell, Nick
    GASTROENTEROLOGY, 2022, 162 (07) : S509 - S509
  • [10] Regulation of DNA methylation on key parasitism genes of Cysticercus cellulosae revealed by integrative epigenomic-transcriptomic analyses
    Wang, Xinrui
    Song, Weiyi
    Ji, Guanyu
    Song, Yining
    Liu, Xiaolei
    Luo, Xuenong
    Liu, Mingyuan
    Sun, Shumin
    HEREDITAS, 2021, 158 (01)