A new local stabilized nonconforming finite element method for solving stationary Navier-Stokes equations

被引:26
|
作者
Zhu, Liping [2 ,3 ]
Li, Jian [1 ,4 ]
Chen, Zhangxin [1 ,2 ]
机构
[1] Univ Calgary, Schulich Sch Engn, Dept Chem & Petr Engn, Calgary, AB T2N 1N4, Canada
[2] Xi An Jiao Tong Univ, Fac Sci, Xian 710049, Peoples R China
[3] Xian Univ Architecture & Technol, Fac Sci, Xian 710054, Peoples R China
[4] Baoji Univ Arts & Sci, Dept Math, Baoji 721007, Peoples R China
基金
加拿大自然科学与工程研究理事会;
关键词
Navier-Stokes equations; Nonconforming finite elements; Mixed finite element method; Error estimate; Numerical results; 2ND-ORDER ELLIPTIC PROBLEMS; PROJECTIONS;
D O I
10.1016/j.cam.2010.12.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study a new local stabilized nonconforming finite element method based on two local Gauss integrals for solving the stationary Navier-Stokes equations. This nonconforming method utilizes the lowest equal-order pair of mixed finite elements (i.e., NCP1-P-1). Error estimates of optimal order are obtained, and numerical results agreeing with these estimates are demonstrated. Numerical comparisons with other mixed finite element methods for solving the Navier-Stokes equations are also presented to show the better performance of the present method. (C) 2010 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:2821 / 2831
页数:11
相关论文
共 50 条
  • [1] Stabilized Multiscale Nonconforming Finite Element Method for the Stationary Navier-Stokes Equations
    Zhang, Tong
    Xu, Shunwei
    Deng, Jien
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [2] A nonconforming finite element method for the stationary Navier-Stokes equations
    Karakashian, OA
    Jureidini, WN
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (01) : 93 - 120
  • [3] Superconvergence of a nonconforming finite element method for the stationary Navier-Stokes equations
    Huang, Pengzhan
    Ma, Xiaoling
    Zhang, Tong
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2016, 59 (02): : 159 - 174
  • [4] A Two-Level Stabilized Nonconforming Finite Element Method for the Stationary Navier-Stokes Equations
    Zhu, Liping
    Chen, Zhangxin
    HIGH PERFORMANCE COMPUTING AND APPLICATIONS, 2010, 5938 : 579 - +
  • [5] A two-level stabilized nonconforming finite element method for the stationary Navier-Stokes equations
    Zhu, Liping
    Chen, Zhangxin
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2015, 114 : 37 - 48
  • [6] A stable nonconforming quadrilateral finite element method for the stationary Stokes and Navier-Stokes equations
    Cai, ZQ
    Douglas, J
    Ye, X
    CALCOLO, 1999, 36 (04) : 215 - 232
  • [7] A NEW NONCONFORMING MIXED FINITE ELEMENT SCHEME FOR THE STATIONARY NAVIER-STOKES EQUATIONS
    石东洋
    任金城
    龚伟
    Acta Mathematica Scientia, 2011, 31 (02) : 367 - 382
  • [8] A NEW NONCONFORMING MIXED FINITE ELEMENT SCHEME FOR THE STATIONARY NAVIER-STOKES EQUATIONS
    Shi Dongyang
    Ren Jincheng
    Gong Wei
    ACTA MATHEMATICA SCIENTIA, 2011, 31 (02) : 367 - 382
  • [9] Stabilized finite-element method for the stationary Navier-Stokes equations
    Yinnian He
    Aiwen Wang
    Liquan Mei
    Journal of Engineering Mathematics, 2005, 51 : 367 - 380
  • [10] Stabilized finite-element method for the stationary Navier-Stokes equations
    He, YN
    Wang, AW
    Mei, LQ
    JOURNAL OF ENGINEERING MATHEMATICS, 2005, 51 (04) : 367 - 380