A stable nonconforming quadrilateral finite element method for the stationary Stokes and Navier-Stokes equations

被引:87
|
作者
Cai, ZQ
Douglas, J
Ye, X
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[2] Univ Arkansas, Dept Math & Stat, Little Rock, AR 72204 USA
关键词
Finite Element Method; Error Estimate; Stokes Equation; Elliptic Equation; Optimal Error;
D O I
10.1007/s100920050031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recently, Douglas ct al. [4] introduced a new, low-order, nonconforming rectangular element for scalar elliptic equations. Here, we apply this element in the approximation of each component of the velocity in the stationary Stokes and Navier-Stokes equations, along with a piecewise-constant element for the pressure. We obtain a stable element in both cases for which optimal error estimates for the approximation of both the velocity and pressure in L-2 can be established, as well as one in a broken H-1-norm for the velocity.
引用
下载
收藏
页码:215 / 232
页数:18
相关论文
共 50 条
  • [1] A stable nonconforming quadrilateral finite element method for the stationary Stokes and Navier–Stokes equations
    Zhiqiang Cai
    Jim Douglas
    Xiu Ye
    CALCOLO, 1999, 36 : 215 - 232
  • [2] A nonconforming finite element method for the stationary Navier-Stokes equations
    Karakashian, OA
    Jureidini, WN
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (01) : 93 - 120
  • [3] Superconvergence of a nonconforming finite element method for the stationary Navier-Stokes equations
    Huang, Pengzhan
    Ma, Xiaoling
    Zhang, Tong
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2016, 59 (02): : 159 - 174
  • [4] A Two-Level Nonconforming Rotated Quadrilateral Finite Element Method for the Stationary Navier-Stokes Equations
    Tian, Weijun
    Mei, Liquan
    He, Yinnian
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [5] Stabilized Multiscale Nonconforming Finite Element Method for the Stationary Navier-Stokes Equations
    Zhang, Tong
    Xu, Shunwei
    Deng, Jien
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [6] A new stable second order nonconforming mixed finite element scheme for the stationary Stokes and Navier-Stokes equations
    Shi, Dongyang
    Gong, Wei
    Ren, Jincheng
    MATHEMATICAL AND COMPUTER MODELLING, 2011, 53 (9-10) : 1956 - 1969
  • [7] A NEW NONCONFORMING MIXED FINITE ELEMENT SCHEME FOR THE STATIONARY NAVIER-STOKES EQUATIONS
    石东洋
    任金城
    龚伟
    Acta Mathematica Scientia, 2011, 31 (02) : 367 - 382
  • [8] A NEW NONCONFORMING MIXED FINITE ELEMENT SCHEME FOR THE STATIONARY NAVIER-STOKES EQUATIONS
    Shi Dongyang
    Ren Jincheng
    Gong Wei
    ACTA MATHEMATICA SCIENTIA, 2011, 31 (02) : 367 - 382
  • [9] A superconvergent nonconforming mixed finite element method for the Navier-Stokes equations
    Ren, Jincheng
    Ma, Yue
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2016, 32 (02) : 646 - 660
  • [10] A Two-Level Stabilized Nonconforming Finite Element Method for the Stationary Navier-Stokes Equations
    Zhu, Liping
    Chen, Zhangxin
    HIGH PERFORMANCE COMPUTING AND APPLICATIONS, 2010, 5938 : 579 - +