A new local stabilized nonconforming finite element method for solving stationary Navier-Stokes equations

被引:26
|
作者
Zhu, Liping [2 ,3 ]
Li, Jian [1 ,4 ]
Chen, Zhangxin [1 ,2 ]
机构
[1] Univ Calgary, Schulich Sch Engn, Dept Chem & Petr Engn, Calgary, AB T2N 1N4, Canada
[2] Xi An Jiao Tong Univ, Fac Sci, Xian 710049, Peoples R China
[3] Xian Univ Architecture & Technol, Fac Sci, Xian 710054, Peoples R China
[4] Baoji Univ Arts & Sci, Dept Math, Baoji 721007, Peoples R China
基金
加拿大自然科学与工程研究理事会;
关键词
Navier-Stokes equations; Nonconforming finite elements; Mixed finite element method; Error estimate; Numerical results; 2ND-ORDER ELLIPTIC PROBLEMS; PROJECTIONS;
D O I
10.1016/j.cam.2010.12.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study a new local stabilized nonconforming finite element method based on two local Gauss integrals for solving the stationary Navier-Stokes equations. This nonconforming method utilizes the lowest equal-order pair of mixed finite elements (i.e., NCP1-P-1). Error estimates of optimal order are obtained, and numerical results agreeing with these estimates are demonstrated. Numerical comparisons with other mixed finite element methods for solving the Navier-Stokes equations are also presented to show the better performance of the present method. (C) 2010 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:2821 / 2831
页数:11
相关论文
共 50 条