A two-level stabilized nonconforming finite element method for the stationary Navier-Stokes equations

被引:4
|
作者
Zhu, Liping [1 ]
Chen, Zhangxin [2 ,3 ]
机构
[1] Xian Univ Architecture & Technol, Coll Sci, Xian 710054, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Math & Stat, Ctr Computat Geosci, Xian 710049, Peoples R China
[3] Univ Calgary, Schulich Sch Engn, Dept Chem & Petr Engn, Calgary, AB T2N 1N4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Navier-Stokes equations; Two-level; Nonconforming finite element method; Error estimate; Numerical results; SPECTRAL GALERKIN METHOD; SPATIAL DISCRETIZATION; TIME DISCRETIZATION;
D O I
10.1016/j.matcom.2011.02.015
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we study an approximation scheme that combines a stabilized nonconforming finite element method and a two-level method to solve the stationary Navier-Stokes equations. Error estimates of optimal order are obtained. Numerical results to check these estimates are presented. (C) 2012 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:37 / 48
页数:12
相关论文
共 50 条