Surface and interface interplay on the oxidizing temperature of iron oxide and Au-iron oxide core-shell nanoparticles

被引:6
|
作者
Sarveena [1 ]
Muraca, Diego [2 ,8 ]
Zelis, P. Mendoza [3 ]
Javed, Y. [4 ]
Ahmad, N. [5 ]
Vargas, J. M. [6 ]
Moscoso-Londono, O. [2 ]
Knobel, M. [2 ,9 ]
Singh, M. [1 ]
Sharma, S. K. [1 ,7 ]
机构
[1] HP Univ, Dept Phys, Shimla 171005, Himachal Prades, India
[2] Univ Estadual Campinas UNICAMP, Inst Fis Gleb Wataghin, BR-13083859 Sao Paulo, SP, Brazil
[3] Univ Nacl La Plata, Dept Fis, Fac Ciencias Exactas, IFLP,CONICET, Cc 67, RA-1900 La Plata, Argentina
[4] Univ Agr Faisalabad, Dept Phys, Faisalabad, Pakistan
[5] Univ Paris Diderot, Lab Mat & Phenomenes Quant, CNRS, UMR 7162, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France
[6] UN Cuyo, Inst Balseiro, Ctr Atom Bariloche CNEA, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina
[7] Univ Fed Maranhao, Dept Fis, BR-65085580 Sao Luis, Brazil
[8] Univ Fed Abc, Ctr Ciencias Nat & Humanas, Ave Estados, BR-5001 Santo Andre, Brazil
[9] CNPEM, Lab Nacl Nanotecnol LNNano, Rua Giuseppe Maximo Scolfaro 10000, BR-13083100 Campinas, SP, Brazil
来源
RSC ADVANCES | 2016年 / 6卷 / 74期
基金
巴西圣保罗研究基金会;
关键词
GOLD; MOSSBAUER; HYPERTHERMIA;
D O I
10.1039/c6ra15610j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This article presents the effect of oxidation temperature on shape anisotropy, phase purity and growth of core-shell heterostructures and consequently their effect on structure-property relationships. Iron oxide and Au-iron oxide nanocomposites were synthesized by a thermal decomposition method by passing pure oxygen at different temperatures (125-250 degrees C). The prepared nanoparticles were surface functionalized by organic molecules; the presence of the organic canopy prevented both direct particle contact as well as further oxidation, resulting in the stability of the nanoparticles. We have observed a systematic improvement in the core and shell shape through tuning the reaction time as well as the oxidizing temperatures. Spherical and spherical triangular shaped core-shell structures have been obtained at an optimum oxidation temperature of 125 degrees C and 150 degrees C for 30 minutes. However, further increase in the temperature as well as oxidation time results in core-shell structure amendment and results in fully grown core-shell heterostructures. As stability and ageing issues limit the use of nanoparticles in applications, to ensure the stability of the prepared iron oxide nanoparticles we performed XRD analysis after more than a year and they remained intact showing no ageing effect. Specific absorption rate values useful for magnetic fluid hyperthermia were obtained for two samples on the basis of detailed characterization using X-ray diffraction, high-resolution transmission electron microscopy, Mossbauer spectroscopy, and dc-magnetization experiments.
引用
收藏
页码:70394 / 70404
页数:11
相关论文
共 50 条
  • [41] Synthesis of core-shell nanomagnetic iron oxide for loading theophylline
    Fereshteh, Fathi
    Abdollah, Seied Sajadi Mir
    Nazanin, Farhadyar
    RESEARCH JOURNAL OF BIOTECHNOLOGY, 2015, 10 (07): : 101 - 104
  • [42] Water oxidation catalysis by manganese oxide/cobalt oxide @iron oxide core-shell nanocomposites
    Achola, Laura
    Ghebrehiwet, Aaron
    Suib, Steven
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [43] Magnetism of iron oxide based core-shell nanoparticles from interface mixing with enhanced spin-orbit coupling
    Skoropata, E.
    Desautels, R. D.
    Chi, C. -C.
    Ouyang, H.
    Freeland, J. W.
    van Lierop, J.
    PHYSICAL REVIEW B, 2014, 89 (02)
  • [44] Gold/Iron Oxide Core/Hollow-Shell Nanoparticles
    Shevchenko, Elena V.
    Bodnarchuk, Maryna I.
    Kovalenko, Maksym V.
    Talapin, Dmitri V.
    Smith, Rachel K.
    Aloni, Shaul
    Heiss, Wolfgang
    Alivisatos, A. Paul
    ADVANCED MATERIALS, 2008, 20 (22) : 4323 - 4329
  • [45] Tetragonal-Like Phase in Core-Shell Iron Iron-Oxide Nanoclusters
    Kaur, Maninder
    McCloy, John S.
    Kukkadapu, Ravi
    Pearce, Carolyn
    Tucek, Jiri
    Bowden, Mark
    Engelhard, Mark
    Arenholz, Elke
    You Qilang
    JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (21): : 11794 - 11803
  • [46] Spectral Study of Oxide-Shell in Core-Shell Iron Nanoclusters.
    Singh, M. Tarsem
    Mccloy, J. S.
    Kukkadapu, R.
    Qiang, Y.
    2015 IEEE MAGNETICS CONFERENCE (INTERMAG), 2015,
  • [47] Solution-phase decomposition of ferrocene into wustite-iron oxide core-shell nanoparticles
    Loedolff, Matthys J.
    Fuller, Rebecca O.
    Nealon, Gareth L.
    Saunders, Martin
    Spackman, Mark A.
    Koutsantonis, George A.
    DALTON TRANSACTIONS, 2022, 51 (04) : 1603 - 1611
  • [48] How hollow structures form from crystalline iron-iron oxide core-shell nanoparticles in the electron beam
    Herman, David A. J.
    Cheong, Soshan
    Banholzer, Moritz J.
    Tilley, Richard D.
    CHEMICAL COMMUNICATIONS, 2013, 49 (55) : 6203 - 6205
  • [49] Ascorbic acid-mediated synthesis and characterisation of iron oxide/gold core-shell nanoparticles
    Sood, Ankur
    Arora, Varun
    Shah, Jyoti
    Kotnala, R. K.
    Jain, Tapan K.
    JOURNAL OF EXPERIMENTAL NANOSCIENCE, 2016, 11 (05) : 370 - 382
  • [50] Human Alveolar Epithelial Cell Responses to Core-Shell Superparamagnetic Iron Oxide Nanoparticles (SPIONs)
    Mbeh, Doris Antoinette
    Mireles, Laura Karina
    Stanicki, Dimitri
    Tabet, Lyes
    Maghni, Karim
    Laurent, Sophie
    Sacher, Edward
    Yahia, L'Hocine
    LANGMUIR, 2015, 31 (13) : 3829 - 3839