Surface and interface interplay on the oxidizing temperature of iron oxide and Au-iron oxide core-shell nanoparticles

被引:6
|
作者
Sarveena [1 ]
Muraca, Diego [2 ,8 ]
Zelis, P. Mendoza [3 ]
Javed, Y. [4 ]
Ahmad, N. [5 ]
Vargas, J. M. [6 ]
Moscoso-Londono, O. [2 ]
Knobel, M. [2 ,9 ]
Singh, M. [1 ]
Sharma, S. K. [1 ,7 ]
机构
[1] HP Univ, Dept Phys, Shimla 171005, Himachal Prades, India
[2] Univ Estadual Campinas UNICAMP, Inst Fis Gleb Wataghin, BR-13083859 Sao Paulo, SP, Brazil
[3] Univ Nacl La Plata, Dept Fis, Fac Ciencias Exactas, IFLP,CONICET, Cc 67, RA-1900 La Plata, Argentina
[4] Univ Agr Faisalabad, Dept Phys, Faisalabad, Pakistan
[5] Univ Paris Diderot, Lab Mat & Phenomenes Quant, CNRS, UMR 7162, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France
[6] UN Cuyo, Inst Balseiro, Ctr Atom Bariloche CNEA, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina
[7] Univ Fed Maranhao, Dept Fis, BR-65085580 Sao Luis, Brazil
[8] Univ Fed Abc, Ctr Ciencias Nat & Humanas, Ave Estados, BR-5001 Santo Andre, Brazil
[9] CNPEM, Lab Nacl Nanotecnol LNNano, Rua Giuseppe Maximo Scolfaro 10000, BR-13083100 Campinas, SP, Brazil
来源
RSC ADVANCES | 2016年 / 6卷 / 74期
基金
巴西圣保罗研究基金会;
关键词
GOLD; MOSSBAUER; HYPERTHERMIA;
D O I
10.1039/c6ra15610j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This article presents the effect of oxidation temperature on shape anisotropy, phase purity and growth of core-shell heterostructures and consequently their effect on structure-property relationships. Iron oxide and Au-iron oxide nanocomposites were synthesized by a thermal decomposition method by passing pure oxygen at different temperatures (125-250 degrees C). The prepared nanoparticles were surface functionalized by organic molecules; the presence of the organic canopy prevented both direct particle contact as well as further oxidation, resulting in the stability of the nanoparticles. We have observed a systematic improvement in the core and shell shape through tuning the reaction time as well as the oxidizing temperatures. Spherical and spherical triangular shaped core-shell structures have been obtained at an optimum oxidation temperature of 125 degrees C and 150 degrees C for 30 minutes. However, further increase in the temperature as well as oxidation time results in core-shell structure amendment and results in fully grown core-shell heterostructures. As stability and ageing issues limit the use of nanoparticles in applications, to ensure the stability of the prepared iron oxide nanoparticles we performed XRD analysis after more than a year and they remained intact showing no ageing effect. Specific absorption rate values useful for magnetic fluid hyperthermia were obtained for two samples on the basis of detailed characterization using X-ray diffraction, high-resolution transmission electron microscopy, Mossbauer spectroscopy, and dc-magnetization experiments.
引用
收藏
页码:70394 / 70404
页数:11
相关论文
共 50 条
  • [31] Surface initiated ATRP in the synthesis of iron oxide/polystyrene core/shell nanoparticles
    Sun, Yabin
    Ding, Xiaobin
    Zheng, Zhaohui
    Cheng, Xu
    Hu, Xinhua
    Peng, YuXing
    EUROPEAN POLYMER JOURNAL, 2007, 43 (03) : 762 - 772
  • [32] Surface initiated ATRP in the synthesis of iron oxide/polystyrene core/shell nanoparticles
    Sun, Yabin
    Ding, Xiaobin
    Zheng, Zhaohui
    Cheng, Xu
    Hu, Xinhua
    Peng, Yuxing
    European Polymer Journal, 2007, 43 (03): : 762 - 772
  • [33] Magnetization Measurements and XMCD Studies on Ion Irradiated Iron Oxide and Core-Shell Iron/Iron-Oxide Nanomaterials
    Kaur, Maninder
    Qiang, You
    Jiang, Weilin
    Pearce, Carolyn
    McCloy, John S.
    IEEE TRANSACTIONS ON MAGNETICS, 2014, 50 (11)
  • [34] Interaction and mechanisms in the phosphate-binding of iron(oxyhydr) oxide core-shell nanoparticles
    Spicher, Magdalena Teresa
    Schwaminger, Sebastian Patrick
    von der Haar-Leistl, Daniela
    Reindl, Marco
    Wagner, Friedrich Ernst
    Berensmeier, Sonja
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 634 : 418 - 430
  • [35] Novel synthesis of superparamagnetic plasmonic core-shell iron oxide-gold nanoparticles
    Billen, Arne
    de Cattelle, Amaury
    Jochum, Johanna K.
    Van Bael, Margriet J.
    Billen, Johan
    Seo, Jin Won
    Brullot, Ward
    Koeckelberghs, Guy
    Verbiest, Thierry
    PHYSICA B-CONDENSED MATTER, 2019, 560 : 85 - 90
  • [36] Iron Oxide-Gold Core-Shell Nanoparticles as Multimodal Imaging Contrast Agent
    Menichetti, Luca
    Manzoni, Leonardo
    Paduano, Luigi
    Flori, A.
    Kusmic, Claudia
    De Marchi, Daniele
    Casciaro, Sergio
    Conversano, Francesco
    Lombardi, Massimo
    Positano, Vincenzo
    Arosio, Daniela
    IEEE SENSORS JOURNAL, 2013, 13 (06) : 2341 - 2347
  • [37] Characterization of iron oxide-gold core-shell multifunctional nanoparticles in biomedical imaging
    Menichetti, Luca
    Arosio, Daniela
    De Marchi, Daniele
    Paduano, Luigi
    Flori, Alessandra
    Conversano, Francesco
    Casciaro, Sergio
    Positano, Vincenzo
    Manzoni, Leonardo
    2011 IEEE SENSORS, 2011, : 1673 - 1676
  • [38] Synthesis and morphology of iron-iron oxide core-shell nanoparticles produced by high pressure gas condensation
    Xing, Lijuan
    ten Brink, Gert H.
    Chen, Bin
    Schmidt, Franz P.
    Haberfehlner, Georg
    Hofer, Ferdinand
    Kooi, Bart J.
    Palasantzas, George
    NANOTECHNOLOGY, 2016, 27 (21)
  • [39] Comparative study of core-shell iron/iron oxide gold covered magnetic nanoparticles obtained in different conditions
    Leostean, C.
    Pana, O.
    Turcu, R.
    Soran, M. L.
    Macavei, S.
    Chauvet, O.
    Payen, C.
    JOURNAL OF NANOPARTICLE RESEARCH, 2011, 13 (11) : 6181 - 6192
  • [40] Passivated iron as core-shell nanoparticles
    Carpenter, EE
    Calvin, S
    Stroud, RM
    Harris, VG
    CHEMISTRY OF MATERIALS, 2003, 15 (17) : 3245 - 3246