Surface and interface interplay on the oxidizing temperature of iron oxide and Au-iron oxide core-shell nanoparticles

被引:6
|
作者
Sarveena [1 ]
Muraca, Diego [2 ,8 ]
Zelis, P. Mendoza [3 ]
Javed, Y. [4 ]
Ahmad, N. [5 ]
Vargas, J. M. [6 ]
Moscoso-Londono, O. [2 ]
Knobel, M. [2 ,9 ]
Singh, M. [1 ]
Sharma, S. K. [1 ,7 ]
机构
[1] HP Univ, Dept Phys, Shimla 171005, Himachal Prades, India
[2] Univ Estadual Campinas UNICAMP, Inst Fis Gleb Wataghin, BR-13083859 Sao Paulo, SP, Brazil
[3] Univ Nacl La Plata, Dept Fis, Fac Ciencias Exactas, IFLP,CONICET, Cc 67, RA-1900 La Plata, Argentina
[4] Univ Agr Faisalabad, Dept Phys, Faisalabad, Pakistan
[5] Univ Paris Diderot, Lab Mat & Phenomenes Quant, CNRS, UMR 7162, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France
[6] UN Cuyo, Inst Balseiro, Ctr Atom Bariloche CNEA, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina
[7] Univ Fed Maranhao, Dept Fis, BR-65085580 Sao Luis, Brazil
[8] Univ Fed Abc, Ctr Ciencias Nat & Humanas, Ave Estados, BR-5001 Santo Andre, Brazil
[9] CNPEM, Lab Nacl Nanotecnol LNNano, Rua Giuseppe Maximo Scolfaro 10000, BR-13083100 Campinas, SP, Brazil
来源
RSC ADVANCES | 2016年 / 6卷 / 74期
基金
巴西圣保罗研究基金会;
关键词
GOLD; MOSSBAUER; HYPERTHERMIA;
D O I
10.1039/c6ra15610j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This article presents the effect of oxidation temperature on shape anisotropy, phase purity and growth of core-shell heterostructures and consequently their effect on structure-property relationships. Iron oxide and Au-iron oxide nanocomposites were synthesized by a thermal decomposition method by passing pure oxygen at different temperatures (125-250 degrees C). The prepared nanoparticles were surface functionalized by organic molecules; the presence of the organic canopy prevented both direct particle contact as well as further oxidation, resulting in the stability of the nanoparticles. We have observed a systematic improvement in the core and shell shape through tuning the reaction time as well as the oxidizing temperatures. Spherical and spherical triangular shaped core-shell structures have been obtained at an optimum oxidation temperature of 125 degrees C and 150 degrees C for 30 minutes. However, further increase in the temperature as well as oxidation time results in core-shell structure amendment and results in fully grown core-shell heterostructures. As stability and ageing issues limit the use of nanoparticles in applications, to ensure the stability of the prepared iron oxide nanoparticles we performed XRD analysis after more than a year and they remained intact showing no ageing effect. Specific absorption rate values useful for magnetic fluid hyperthermia were obtained for two samples on the basis of detailed characterization using X-ray diffraction, high-resolution transmission electron microscopy, Mossbauer spectroscopy, and dc-magnetization experiments.
引用
收藏
页码:70394 / 70404
页数:11
相关论文
共 50 条
  • [21] Automated droplet reactor for the synthesis of iron oxide/gold core-shell nanoparticles
    Christian D. Ahrberg
    Ji Wook Choi
    Bong Geun Chung
    Scientific Reports, 10
  • [22] Determining the size of nanoparticles in the example of magnetic iron oxide core-shell systems
    Jarzebski, Maciej
    Koscinski, Mikolaj
    Bialopiotrowicz, Tomasz
    6TH INTERNATIONAL CONFERENCE ON MANUFACTURING ENGINEERING AND PROCESS (ICMEP 2017), 2017, 885
  • [23] Functionalized magnetic iron oxide/alginate core-shell nanoparticles for targeting hyperthermia
    Liao, Shih-Hsiang
    Liu, Chia-Hung
    Bastakoti, Bishnu Prasad
    Suzuki, Norihiro
    Chang, Yung
    Yamauchi, Yusuke
    Lin, Feng-Huei
    Wu, Kevin C-W
    INTERNATIONAL JOURNAL OF NANOMEDICINE, 2015, 10 : 3315 - 3328
  • [24] Comparative analysis of the 1H NMR relaxation enhancement produced by iron oxide and core-shell iron-iron oxide nanoparticles
    Miguel, O. Bomati
    Gossuin, Yves
    Morales, M. P.
    Gillis, P.
    Muller, R. N.
    Veintemillas-Verdaguer, Sabino
    MAGNETIC RESONANCE IMAGING, 2007, 25 (10) : 1437 - 1441
  • [25] Core/shell iron/iron oxide nanoparticles: are they promising for magnetic hyperthermia?
    Nemati, Z.
    Alonso, J.
    Khurshid, H.
    Phan, M. H.
    Srikanth, H.
    RSC ADVANCES, 2016, 6 (45): : 38697 - 38702
  • [26] Increase in the Curie temperature and magnetic anisotropy in FePd/Pt-iron oxide core-shell nanoparticles
    Fleurier, R.
    Bhattacharyya, S.
    Saboungi, M. -L.
    Raimboux, N.
    Simon, P.
    Kliava, J.
    Magrez, A.
    Feher, T.
    Forro, L.
    Salvetat, J. -P.
    JOURNAL OF APPLIED PHYSICS, 2009, 106 (07)
  • [27] High temperature stable monodisperse superparamagnetic core-shell iron-oxide@SnO2 nanoparticles
    Xu, Xiaobin
    Ge, Mingyuan
    Wang, Cen
    Jiang, J. Z.
    APPLIED PHYSICS LETTERS, 2009, 95 (18)
  • [28] Iron-iron oxide core-shell nanoparticles synthesized by laser pyrolysis followed by superficial oxidation
    Dumitrache, F
    Morjan, I
    Alexandrescu, R
    Ciupina, V
    Prodan, G
    Voicu, I
    Fleaca, C
    Albu, L
    Savoiu, M
    Sandu, I
    Popovici, E
    Soare, I
    APPLIED SURFACE SCIENCE, 2005, 247 (1-4) : 25 - 31
  • [29] Synthesis of monodisperse iron oxide and iron/iron oxide core/shell nanoparticles via iron-oleylamine complex
    Yu, S.
    Chow, G. M.
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2006, 6 (07) : 2135 - 2140
  • [30] Some features of acetylene hydrogenation on Au-iron oxide catalyst
    Sarkany, A.
    Schay, Z.
    Frey, K.
    Szeles, E.
    Sajo, I.
    APPLIED CATALYSIS A-GENERAL, 2010, 380 (1-2) : 133 - 141