Surface and interface interplay on the oxidizing temperature of iron oxide and Au-iron oxide core-shell nanoparticles

被引:6
|
作者
Sarveena [1 ]
Muraca, Diego [2 ,8 ]
Zelis, P. Mendoza [3 ]
Javed, Y. [4 ]
Ahmad, N. [5 ]
Vargas, J. M. [6 ]
Moscoso-Londono, O. [2 ]
Knobel, M. [2 ,9 ]
Singh, M. [1 ]
Sharma, S. K. [1 ,7 ]
机构
[1] HP Univ, Dept Phys, Shimla 171005, Himachal Prades, India
[2] Univ Estadual Campinas UNICAMP, Inst Fis Gleb Wataghin, BR-13083859 Sao Paulo, SP, Brazil
[3] Univ Nacl La Plata, Dept Fis, Fac Ciencias Exactas, IFLP,CONICET, Cc 67, RA-1900 La Plata, Argentina
[4] Univ Agr Faisalabad, Dept Phys, Faisalabad, Pakistan
[5] Univ Paris Diderot, Lab Mat & Phenomenes Quant, CNRS, UMR 7162, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France
[6] UN Cuyo, Inst Balseiro, Ctr Atom Bariloche CNEA, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina
[7] Univ Fed Maranhao, Dept Fis, BR-65085580 Sao Luis, Brazil
[8] Univ Fed Abc, Ctr Ciencias Nat & Humanas, Ave Estados, BR-5001 Santo Andre, Brazil
[9] CNPEM, Lab Nacl Nanotecnol LNNano, Rua Giuseppe Maximo Scolfaro 10000, BR-13083100 Campinas, SP, Brazil
来源
RSC ADVANCES | 2016年 / 6卷 / 74期
基金
巴西圣保罗研究基金会;
关键词
GOLD; MOSSBAUER; HYPERTHERMIA;
D O I
10.1039/c6ra15610j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This article presents the effect of oxidation temperature on shape anisotropy, phase purity and growth of core-shell heterostructures and consequently their effect on structure-property relationships. Iron oxide and Au-iron oxide nanocomposites were synthesized by a thermal decomposition method by passing pure oxygen at different temperatures (125-250 degrees C). The prepared nanoparticles were surface functionalized by organic molecules; the presence of the organic canopy prevented both direct particle contact as well as further oxidation, resulting in the stability of the nanoparticles. We have observed a systematic improvement in the core and shell shape through tuning the reaction time as well as the oxidizing temperatures. Spherical and spherical triangular shaped core-shell structures have been obtained at an optimum oxidation temperature of 125 degrees C and 150 degrees C for 30 minutes. However, further increase in the temperature as well as oxidation time results in core-shell structure amendment and results in fully grown core-shell heterostructures. As stability and ageing issues limit the use of nanoparticles in applications, to ensure the stability of the prepared iron oxide nanoparticles we performed XRD analysis after more than a year and they remained intact showing no ageing effect. Specific absorption rate values useful for magnetic fluid hyperthermia were obtained for two samples on the basis of detailed characterization using X-ray diffraction, high-resolution transmission electron microscopy, Mossbauer spectroscopy, and dc-magnetization experiments.
引用
收藏
页码:70394 / 70404
页数:11
相关论文
共 50 条
  • [1] High temperature oxidation of iron-iron oxide core-shell nanowires composed of iron nanoparticles
    Krajewski, M.
    Brzozka, K.
    Lin, W. S.
    Lin, H. M.
    Tokarczyk, M.
    Borysiuk, J.
    Kowalski, G.
    Wasik, D.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (05) : 3900 - 3909
  • [2] Omniphilic superparamagnetic iron oxide core-shell nanoparticles
    Shaghasemi, Behzad Shirmardi
    Reimhult, Erik
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250
  • [3] Size-dependent oxidation in iron/iron oxide core-shell nanoparticles
    Signorini, L
    Pasquini, L
    Savini, L
    Carboni, R
    Boscherini, F
    Bonetti, E
    Giglia, A
    Pedio, M
    Mahne, N
    Nannarone, S
    PHYSICAL REVIEW B, 2003, 68 (19)
  • [4] Core-shell iron-iron oxide nanoparticles: magnetic properties and interactions
    Kuhn, LT
    Bojesen, A
    Timmermann, L
    Fauth, K
    Goering, E
    Johnson, E
    Nielsen, MM
    Morup, S
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2004, 272 : 1485 - 1486
  • [5] Structural and magnetic properties of core-shell iron-iron oxide nanoparticles
    Kuhn, LT
    Bojesen, A
    Timmermann, L
    Nielsen, MM
    Morup, S
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (49) : 13551 - 13567
  • [6] Controlled Nanostructuring of Multiphase Core-Shell Iron Oxide Nanoparticles
    Riaz, S.
    Akbar, A.
    Naseem, S.
    IEEE TRANSACTIONS ON MAGNETICS, 2014, 50 (01)
  • [7] Low intensity sonosynthesis of iron carbide@iron oxide core-shell nanoparticles
    Arguelles-Pesqueira, A., I
    Dieguez-Armenta, N. M.
    Bobadilla-Valencia, A. K.
    Nataraj, S. K.
    Rosas-Durazo, A.
    Esquivel, R.
    Alvarez-Ramos, M. E.
    Escudero, Roberto
    Guerrero-German, P.
    Lucero-Acuna, J. A.
    Zavala-Rivera, P.
    ULTRASONICS SONOCHEMISTRY, 2018, 49 : 303 - 309
  • [8] Size and composition control of core-shell structured iron/iron-oxide nanoparticles
    Khurshid, H.
    Tzitzios, V.
    Li, Wanfeng
    Hadjipanayis, C. G.
    Hadjipanayis, G. C.
    JOURNAL OF APPLIED PHYSICS, 2010, 107 (09)
  • [9] Mechanism of Electron Beam Induced Oxide Layer Thickening on Iron-Iron Oxide Core-Shell Nanoparticles
    Sundararajan, Jennifer A.
    Kaur, Maninder
    Qiang, You
    JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (15): : 8357 - 8363
  • [10] Iron/iron oxide core-shell nanoclusters for biomedical applications
    Qiang, You
    Antony, Jiji
    Sharma, Amit
    Nutting, Joseph
    Sikes, Daniel
    Meyer, Daniel
    JOURNAL OF NANOPARTICLE RESEARCH, 2006, 8 (3-4) : 489 - 496