Separation Choosability and Dense Bipartite Induced Subgraphs

被引:9
|
作者
Esperet, Louis [1 ]
Kang, Ross J. [2 ]
Thomasse, Stephan [3 ]
机构
[1] Univ Grenoble Alpes, CNRS, G SCOP, 46 Ave Felix Viallet, F-38000 Grenoble, France
[2] Radboud Univ Nijmegen, POB 9010, NL-6500 GL Nijmegen, Netherlands
[3] Ecole Normale Super Lyon, Lab Informat Parallelisme, 46 Allee Italie, F-69364 Lyon, France
来源
COMBINATORICS PROBABILITY & COMPUTING | 2019年 / 28卷 / 05期
关键词
CHROMATIC NUMBER; GRAPHS;
D O I
10.1017/S0963548319000026
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study a restricted form of list colouring, for which every pair of lists that correspond to adjacent vertices may not share more than one colour. The optimal list size such that a proper list colouring is always possible given this restriction, we call separation choosability. We show for bipartite graphs that separation choosability increases with (the logarithm of) the minimum degree. This strengthens results of Molloy and Thron and, partially, of Alon. One attempt to drop the bipartiteness assumption precipitates a natural class of Ramsey-type questions, of independent interest. For example, does every triangle-free graph of minimum degree d contain a bipartite induced subgraph of minimum degree Omega(log d) as d -> infinity?
引用
收藏
页码:720 / 732
页数:13
相关论文
共 50 条
  • [41] On the number of maximal bipartite subgraphs of a graph
    Byskov, JM
    Madsen, BA
    Skjernaa, J
    JOURNAL OF GRAPH THEORY, 2005, 48 (02) : 127 - 132
  • [42] Nodal Domain Theorems and bipartite subgraphs
    Biyikoglu, T
    Leydold, J
    Stadler, PF
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2005, 13 : 344 - 351
  • [43] BIPARTITE SUBGRAPHS AND THE SIGNLESS LAPLACIAN MATRIX
    Kirkland, Steve
    Paul, Debdas
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2011, 5 (01) : 1 - 13
  • [44] Bipartite subgraphs and quasi-randomness
    Skokan, J
    Thoma, L
    GRAPHS AND COMBINATORICS, 2004, 20 (02) : 255 - 262
  • [45] Decomposition of bipartite graphs into special subgraphs
    Chen, Guantao
    Schelp, Richard H.
    DISCRETE APPLIED MATHEMATICS, 2007, 155 (03) : 400 - 404
  • [46] MAXIMUM BIPARTITE SUBGRAPHS OF KNESER GRAPHS
    POLJAK, S
    TUZA, Z
    GRAPHS AND COMBINATORICS, 1987, 3 (02) : 191 - 199
  • [47] Bipartite Subgraphs and Quasi-Randomness
    Jozef Skokan
    Lubos Thoma
    Graphs and Combinatorics, 2004, 20 : 255 - 262
  • [48] Dense Subgraphs on Dynamic Networks
    Das Sarma, Atish
    Lall, Ashwin
    Nanongkai, Danupon
    Trehan, Amitabh
    DISTRIBUTED COMPUTING, DISC 2012, 2012, 7611 : 151 - 165
  • [49] Complexity of finding dense subgraphs
    Asahiro, Y
    Hassin, R
    Iwama, K
    DISCRETE APPLIED MATHEMATICS, 2002, 121 (1-3) : 15 - 26
  • [50] A DECOMPOSITION OF A GRAPH INTO DENSE SUBGRAPHS
    TOIDA, S
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1985, 32 (06): : 583 - 589