Separation Choosability and Dense Bipartite Induced Subgraphs

被引:9
|
作者
Esperet, Louis [1 ]
Kang, Ross J. [2 ]
Thomasse, Stephan [3 ]
机构
[1] Univ Grenoble Alpes, CNRS, G SCOP, 46 Ave Felix Viallet, F-38000 Grenoble, France
[2] Radboud Univ Nijmegen, POB 9010, NL-6500 GL Nijmegen, Netherlands
[3] Ecole Normale Super Lyon, Lab Informat Parallelisme, 46 Allee Italie, F-69364 Lyon, France
来源
COMBINATORICS PROBABILITY & COMPUTING | 2019年 / 28卷 / 05期
关键词
CHROMATIC NUMBER; GRAPHS;
D O I
10.1017/S0963548319000026
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study a restricted form of list colouring, for which every pair of lists that correspond to adjacent vertices may not share more than one colour. The optimal list size such that a proper list colouring is always possible given this restriction, we call separation choosability. We show for bipartite graphs that separation choosability increases with (the logarithm of) the minimum degree. This strengthens results of Molloy and Thron and, partially, of Alon. One attempt to drop the bipartiteness assumption precipitates a natural class of Ramsey-type questions, of independent interest. For example, does every triangle-free graph of minimum degree d contain a bipartite induced subgraph of minimum degree Omega(log d) as d -> infinity?
引用
收藏
页码:720 / 732
页数:13
相关论文
共 50 条
  • [31] Colouring graphs with forbidden bipartite subgraphs
    Anderson, James
    Bernshteyn, Anton
    Dhawan, Abhishek
    COMBINATORICS PROBABILITY & COMPUTING, 2023, 32 (01): : 45 - 67
  • [32] Ovoids and Bipartite Subgraphs in Generalized Quadrangles
    A. A. Makhnev
    A. A. Makhnev
    Mathematical Notes, 2003, 73 : 829 - 837
  • [33] Efficient Enumeration of Bipartite Subgraphs in Graphs
    Wasa, Kunihiro
    Uno, Takeaki
    COMPUTING AND COMBINATORICS (COCOON 2018), 2018, 10976 : 454 - 466
  • [34] On Vertex-Disjoint Complete Bipartite Subgraphs in a Bipartite Graph
    Hong Wang
    Graphs and Combinatorics, 1999, 15 : 353 - 364
  • [35] Edge cover by connected bipartite subgraphs
    Liberti, Leo
    Alfandari, Laurent
    Plateau, Marie-Christine
    ANNALS OF OPERATIONS RESEARCH, 2011, 188 (01) : 307 - 329
  • [36] Edge cover by connected bipartite subgraphs
    Leo Liberti
    Laurent Alfandari
    Marie-Christine Plateau
    Annals of Operations Research, 2011, 188 : 307 - 329
  • [37] Bipartite subgraphs of integer weighted graphs
    Alon, N
    Halperin, E
    DISCRETE MATHEMATICS, 1998, 181 (1-3) : 19 - 29
  • [38] ON RAMSEY GRAPHS WITHOUT BIPARTITE SUBGRAPHS
    NESETRIL, J
    RODL, V
    DISCRETE MATHEMATICS, 1992, 101 (1-3) : 223 - 229
  • [39] Ovoids and bipartite subgraphs in generalized quadrangles
    Makhnev, AA
    Makhnev, AA
    MATHEMATICAL NOTES, 2003, 73 (5-6) : 829 - 837
  • [40] On covering graphs by complete bipartite subgraphs
    Jukna, S.
    Kulikov, A. S.
    DISCRETE MATHEMATICS, 2009, 309 (10) : 3399 - 3403