Separation Choosability and Dense Bipartite Induced Subgraphs

被引:9
|
作者
Esperet, Louis [1 ]
Kang, Ross J. [2 ]
Thomasse, Stephan [3 ]
机构
[1] Univ Grenoble Alpes, CNRS, G SCOP, 46 Ave Felix Viallet, F-38000 Grenoble, France
[2] Radboud Univ Nijmegen, POB 9010, NL-6500 GL Nijmegen, Netherlands
[3] Ecole Normale Super Lyon, Lab Informat Parallelisme, 46 Allee Italie, F-69364 Lyon, France
来源
COMBINATORICS PROBABILITY & COMPUTING | 2019年 / 28卷 / 05期
关键词
CHROMATIC NUMBER; GRAPHS;
D O I
10.1017/S0963548319000026
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study a restricted form of list colouring, for which every pair of lists that correspond to adjacent vertices may not share more than one colour. The optimal list size such that a proper list colouring is always possible given this restriction, we call separation choosability. We show for bipartite graphs that separation choosability increases with (the logarithm of) the minimum degree. This strengthens results of Molloy and Thron and, partially, of Alon. One attempt to drop the bipartiteness assumption precipitates a natural class of Ramsey-type questions, of independent interest. For example, does every triangle-free graph of minimum degree d contain a bipartite induced subgraph of minimum degree Omega(log d) as d -> infinity?
引用
收藏
页码:720 / 732
页数:13
相关论文
共 50 条
  • [1] DENSE INDUCED SUBGRAPHS OF DENSE BIPARTITE GRAPHS
    McCarty, Rose
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2021, 35 (02) : 661 - 667
  • [2] Dense Induced Bipartite Subgraphs in Triangle-Free Graphs
    Kwan, Matthew
    Letzter, Shoham
    Sudakov, Benny
    Tuan Tran
    COMBINATORICA, 2020, 40 (02) : 283 - 305
  • [3] Dense Induced Bipartite Subgraphs in Triangle-Free Graphs
    Matthew Kwan
    Shoham Letzter
    Benny Sudakov
    Tuan Tran
    Combinatorica, 2020, 40 : 283 - 305
  • [4] Large homogeneous subgraphs in bipartite graphs with forbidden induced subgraphs
    Axenovich, Maria
    Tompkins, Casey
    Weber, Lea
    JOURNAL OF GRAPH THEORY, 2021, 97 (01) : 34 - 46
  • [5] On the choosability of bipartite graphs
    Wang, Guoping
    Huang, Qiongxiang
    ARS COMBINATORIA, 2009, 90 : 289 - 293
  • [6] Choosability of bipartite graphs
    Hanson, D
    MacGillivray, G
    Toft, B
    ARS COMBINATORIA, 1996, 44 : 183 - 192
  • [7] DENSE PACKINGS OF INDUCED SUBGRAPHS
    EXOO, G
    ARS COMBINATORIA, 1986, 22 : 5 - 10
  • [8] Bipartite subgraphs
    Alon, N
    COMBINATORICA, 1996, 16 (03) : 301 - 311
  • [9] Note on the choosability of bipartite graphs
    Wang, Guoping
    Huang, Qiongxiang
    ARS COMBINATORIA, 2010, 94 : 129 - 133
  • [10] Dense subgraphs induced by edge labels
    Kumpulainen, Iiro
    Tatti, Nikolaj
    MACHINE LEARNING, 2024, 113 (04) : 1967 - 1987