Dense subgraphs induced by edge labels

被引:0
|
作者
Kumpulainen, Iiro [1 ]
Tatti, Nikolaj [1 ]
机构
[1] Univ Helsinki, HIIT, Helsinki, Finland
基金
芬兰科学院;
关键词
Dense subgraphs; Convex hull; Label-induced subgraphs; MAINTENANCE; CLIQUES;
D O I
10.1007/s10994-023-06377-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Finding densely connected groups of nodes in networks is a widely-used tool for analysis in graph mining. A popular choice for finding such groups is to find subgraphs with a high average degree. While useful, interpreting such subgraphs may be difficult. On the other hand, many real-world networks have additional information, and we are specifically interested in networks with labels on edges. In this paper, we study finding sets of labels that induce dense subgraphs. We consider two notions of density: average degree and the number of edges minus the number of nodes weighted by a parameter alpha \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document} . There are many ways to induce a subgraph from a set of labels, and we study two cases: First, we study conjunctive-induced dense subgraphs, where the subgraph edges need to have all labels. Secondly, we study disjunctive-induced dense subgraphs, where the subgraph edges need to have at least one label. We show that both problems are NP-hard. Because of the hardness, we resort to greedy heuristics. We show that we can implement the greedy search efficiently: the respective running times for finding conjunctive-induced and disjunctive-induced dense subgraphs are in O p log k \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O} \mathopen {}\left( p \log k\right)$$\end{document} and O p log 2 k \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O} \mathopen {}\left( p \log <^>2 k\right)$$\end{document} , where p is the number of edge-label pairs and k is the number of labels. Our experimental evaluation demonstrates that we can find the ground truth in synthetic graphs and that we can find interpretable subgraphs from real-world networks.
引用
收藏
页码:1967 / 1987
页数:21
相关论文
共 50 条
  • [1] Dense subgraphs induced by edge labels
    Iiro Kumpulainen
    Nikolaj Tatti
    Machine Learning, 2024, 113 : 1967 - 1987
  • [2] DENSE PACKINGS OF INDUCED SUBGRAPHS
    EXOO, G
    ARS COMBINATORIA, 1986, 22 : 5 - 10
  • [3] DENSE INDUCED SUBGRAPHS OF DENSE BIPARTITE GRAPHS
    McCarty, Rose
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2021, 35 (02) : 661 - 667
  • [4] Edge Contraction and Forbidden Induced Subgraphs
    Ibrahim, Hany
    Tittmann, Peter
    GRAPHS AND COMBINATORIAL OPTIMIZATION: FROM THEORY TO APPLICATIONS, CTW 2023, 2024, 13 : 15 - 27
  • [5] Separation Choosability and Dense Bipartite Induced Subgraphs
    Esperet, Louis
    Kang, Ross J.
    Thomasse, Stephan
    COMBINATORICS PROBABILITY & COMPUTING, 2019, 28 (05): : 720 - 732
  • [6] MiMAG: mining coherent subgraphs in multi-layer graphs with edge labels
    Brigitte Boden
    Stephan Günnemann
    Holger Hoffmann
    Thomas Seidl
    Knowledge and Information Systems, 2017, 50 : 417 - 446
  • [7] MiMAG: mining coherent subgraphs in multi-layer graphs with edge labels
    Boden, Brigitte
    Guennemann, Stephan
    Hoffmann, Holger
    Seidl, Thomas
    KNOWLEDGE AND INFORMATION SYSTEMS, 2017, 50 (02) : 417 - 446
  • [8] Detecting Dense Subgraphs in Complex Networks Based on Edge Density Coefficient
    Guan Bo
    Zan Xiangzhen
    Xiao Biyu
    Ma Runnian
    Zhang Fengyue
    Liu Wenbin
    CHINESE JOURNAL OF ELECTRONICS, 2013, 22 (03): : 517 - 520
  • [9] Detecting dense subgraphs in complex networks based on edge density coefficient
    Guan, B. (guanbo@nbut.cn), 1600, Chinese Institute of Electronics (22):
  • [10] On Finding Dense Subgraphs
    Khuller, Samir
    Saha, Barna
    AUTOMATA, LANGUAGES AND PROGRAMMING, PT I, 2009, 5555 : 597 - 608