Dense subgraphs induced by edge labels

被引:0
|
作者
Kumpulainen, Iiro [1 ]
Tatti, Nikolaj [1 ]
机构
[1] Univ Helsinki, HIIT, Helsinki, Finland
基金
芬兰科学院;
关键词
Dense subgraphs; Convex hull; Label-induced subgraphs; MAINTENANCE; CLIQUES;
D O I
10.1007/s10994-023-06377-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Finding densely connected groups of nodes in networks is a widely-used tool for analysis in graph mining. A popular choice for finding such groups is to find subgraphs with a high average degree. While useful, interpreting such subgraphs may be difficult. On the other hand, many real-world networks have additional information, and we are specifically interested in networks with labels on edges. In this paper, we study finding sets of labels that induce dense subgraphs. We consider two notions of density: average degree and the number of edges minus the number of nodes weighted by a parameter alpha \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document} . There are many ways to induce a subgraph from a set of labels, and we study two cases: First, we study conjunctive-induced dense subgraphs, where the subgraph edges need to have all labels. Secondly, we study disjunctive-induced dense subgraphs, where the subgraph edges need to have at least one label. We show that both problems are NP-hard. Because of the hardness, we resort to greedy heuristics. We show that we can implement the greedy search efficiently: the respective running times for finding conjunctive-induced and disjunctive-induced dense subgraphs are in O p log k \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O} \mathopen {}\left( p \log k\right)$$\end{document} and O p log 2 k \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O} \mathopen {}\left( p \log <^>2 k\right)$$\end{document} , where p is the number of edge-label pairs and k is the number of labels. Our experimental evaluation demonstrates that we can find the ground truth in synthetic graphs and that we can find interpretable subgraphs from real-world networks.
引用
收藏
页码:1967 / 1987
页数:21
相关论文
共 50 条
  • [31] Counting Small Induced Subgraphs with Edge-Monotone Properties
    Doering, Simon
    Marx, Daniel
    Wellnitz, Philip
    PROCEEDINGS OF THE 56TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, STOC 2024, 2024, : 1517 - 1525
  • [32] REGULAR SUBGRAPHS OF DENSE GRAPHS
    PYBER, L
    COMBINATORICA, 1985, 5 (04) : 347 - 349
  • [33] Edge-disjoint induced subgraphs with given minimum degree
    Yuster, Raphael
    ELECTRONIC JOURNAL OF COMBINATORICS, 2013, 20 (01):
  • [34] OPTIMAL ADJACENCY LABELS FOR SUBGRAPHS OF CARTESIAN PRODUCTS
    Esperet, Louis
    Harms, Nathaniel
    Zamaraev, Viktor
    SIAM Journal on Discrete Mathematics, 2024, 38 (03) : 2181 - 2193
  • [35] EDGE ORBITS AND EDGE-DELETED SUBGRAPHS
    ANDERSEN, LD
    DING, SK
    SABIDUSSI, G
    VESTERGAARD, PD
    GRAPHS AND COMBINATORICS, 1992, 8 (01) : 31 - 44
  • [36] Dense subgraphs in temporal social networks
    Riccardo Dondi
    Pietro Hiram Guzzi
    Mohammad Mehdi Hosseinzadeh
    Marianna Milano
    Social Network Analysis and Mining, 13
  • [37] Complete Partite subgraphs in dense hypergraphs
    Roedl, Vojtech
    Schacht, Mathias
    RANDOM STRUCTURES & ALGORITHMS, 2012, 41 (04) : 557 - 573
  • [38] MOEBIUS FUNCTION ON THE LATTICE OF DENSE SUBGRAPHS
    NETTLETON, RE
    GREEN, MS
    JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS SECTION B-MATHEMATICAL SCIENCES, 1960, 64 (01): : 41 - 47
  • [39] Fast Computation of Dense Temporal Subgraphs
    Ma, Shuai
    Hu, Renjun
    Wang, Luoshu
    Lin, Xuelian
    Huai, Jinpeng
    2017 IEEE 33RD INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2017), 2017, : 361 - 372
  • [40] Mining Dense Subgraphs with Similar Edges
    Rozenshtein, Polina
    Preti, Giulia
    Gionis, Aristides
    Velegrakis, Yannis
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2020, PT III, 2021, 12459 : 20 - 36