Almost Sure Weyl Law for Quantized Tori

被引:3
|
作者
Vogel, Martin [1 ,2 ]
机构
[1] Univ Strasbourg, UMR 7501, Inst Rech Math Avancee, 7 Rue Rene Descartes, F-67084 Strasbourg, France
[2] CNRS, 7 Rue Rene Descartes, F-67084 Strasbourg, France
关键词
D O I
10.1007/s00220-020-03797-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the eigenvalues of the Toeplitz quantization of complex-valued functions on the torus subject to small random perturbations given by a complex-valued random matrix whose entries are independent copies of a random variable with mean 0, variance 1 and bounded fourth moment. We prove that the eigenvalues of the perturbed operator satisfy a Weyl law with probability close to one, which proves in particular a conjecture by Christiansen and Zworski (Commun Math Phys 299:305-334, 2010).
引用
收藏
页码:1539 / 1585
页数:47
相关论文
共 50 条