机构:
Univ Strasbourg, UMR 7501, Inst Rech Math Avancee, 7 Rue Rene Descartes, F-67084 Strasbourg, France
CNRS, 7 Rue Rene Descartes, F-67084 Strasbourg, FranceUniv Strasbourg, UMR 7501, Inst Rech Math Avancee, 7 Rue Rene Descartes, F-67084 Strasbourg, France
Vogel, Martin
[1
,2
]
机构:
[1] Univ Strasbourg, UMR 7501, Inst Rech Math Avancee, 7 Rue Rene Descartes, F-67084 Strasbourg, France
[2] CNRS, 7 Rue Rene Descartes, F-67084 Strasbourg, France
We study the eigenvalues of the Toeplitz quantization of complex-valued functions on the torus subject to small random perturbations given by a complex-valued random matrix whose entries are independent copies of a random variable with mean 0, variance 1 and bounded fourth moment. We prove that the eigenvalues of the perturbed operator satisfy a Weyl law with probability close to one, which proves in particular a conjecture by Christiansen and Zworski (Commun Math Phys 299:305-334, 2010).