Almost sure relative stability of the overshoot of power law boundaries

被引:1
|
作者
Doney, R. A.
Maller, R. A. [1 ]
机构
[1] Australian Natl Univ, Sch Finance & Appl Stat, Canberra, ACT, Australia
[2] Univ Manchester, Dept Math, Manchester M60 1QD, Lancs, England
基金
澳大利亚研究理事会;
关键词
random walk; curved boundaries; overshoot of power-law boundaries;
D O I
10.1007/s10959-006-0040-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We give necessary and sufficient conditions for the almost sure relative stability of the overshoot of a random walk when it exits from a two-sided symmetric region with curved boundaries. The boundaries are of power-law type, +/- rn(b), r > 0, n= 1, 2,..., where 0 <= b< 1, b not equal 1/ 2. In these cases, the a.s. stability occurs if and only if the mean step length of the random walk is finite and non-zero, or the step length has a finite variance and mean zero.
引用
收藏
页码:47 / 63
页数:17
相关论文
共 50 条