Temperature-Dependent Thermal Properties of Phase-Change Memory Electrode Materials

被引:18
|
作者
Bozorg-Grayeli, Elah [1 ]
Reifenberg, John P. [2 ]
Panzer, Matthew A. [3 ]
Rowlette, Jeremy A. [4 ]
Goodson, Kenneth E. [1 ]
机构
[1] Stanford Univ, Stanford, CA 94305 USA
[2] Intel Corp, Santa Clara, CA 95054 USA
[3] KLA Tencor, Milpitas, CA 95053 USA
[4] Daylight Solut, San Diego, CA 92128 USA
关键词
Electrode materials; nonvolatile memory; phase-change memory (PCM); thermal boundary resistance (TBR); thermal conductivity; BOUNDARY RESISTANCE;
D O I
10.1109/LED.2011.2158796
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The programming current required to switch a phase-change memory cell depends upon the thermal resistances in the device. In many designs, significant heat loss occurs through the electrode. This letter investigates the thermal properties of a multilayer electrode stack. This material offers greater thermal resistance than single-material electrodes due to the presence of multiple thermal boundary resistances (TBRs), reducing heat loss from the device and potentially lowering the programming current. Picosecond time-domain thermoreflectance interrogates the temperature-dependent thermal conductivity of three as-deposited and postannealed electrode materials: carbon, titanium nitride, and tungsten nitride. These data are used to extract the temperature-dependent, as-deposited, and postannealed TBR in two multilayer electrode stacks: carbon-titanium nitride and tungsten-tungsten nitride. The C-TiN stacks demonstrate an as-deposited TBR of 4.9 m(2)K/GW, increasing to 11.9 m(2)K/GW postanneal. The W-WN(x) stacks demonstrate an as-deposited TBR of 3.9 m(2)K/GW, decreasing to 3.6 m(2)K/GW postanneal. These resistances are equivalent to electrode films with thickness on the order of tens of nanometers.
引用
收藏
页码:1281 / 1283
页数:3
相关论文
共 50 条
  • [31] A Thermal Accumulator Based on Phase-Change Materials
    Bocharov, G. S.
    Vagin, A. O.
    Grigoriev, I. S.
    Dedov, A. V.
    Eletskii, A. V.
    Zakharenkov, A. V.
    Zverev, M. A.
    [J]. DOKLADY PHYSICS, 2022, 67 (06) : 169 - 172
  • [32] Thermal characteristics of microencapsulated phase-change materials
    Choi, E
    Akino, N
    [J]. HEAT TRANSFER 1998, VOL 7: GENERAL PAPERS, 1998, : 121 - 126
  • [33] A Thermal Accumulator Based on Phase-Change Materials
    G. S. Bocharov
    A. O. Vagin
    I. S. Grigoriev
    A. V. Dedov
    A. V. Eletskii
    A. V. Zakharenkov
    M. A. Zverev
    [J]. Doklady Physics, 2022, 67 : 169 - 172
  • [34] TEMPERATURE-DEPENDENT THERMAL CONDUCTIVITY OF EICOSANE-BASED PHASE CHANGE MATERIALS WITH COPPER OXIDE NANOPARTICLES
    Fan, Liwu
    Khodadadi, J. M.
    [J]. TMNN-2010 - PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON THERMAL AND MATERIALS NANOSCIENCE AND NANOTECHNOLOGY, 2011,
  • [35] Estimation of the Temperature-Dependent Thermal Conductivity of Multi-Phase Materials
    Zhang, Haifeng
    Li, Pengxin
    He, Liqun
    [J]. MECHANICAL PROPERTIES OF MATERIALS AND INFORMATION TECHNOLOGY, 2012, 340 : 34 - 39
  • [36] Phase-change materials for intelligent temperature regulation
    Guo, Ruihan
    Shan, Linbo
    Wu, Yonghuang
    Cai, Yimao
    Huang, Ru
    Ma, He
    Tang, Kechao
    Liu, Kai
    [J]. MATERIALS TODAY ENERGY, 2022, 23
  • [37] Nanoscale amorphous interfaces in phase-change memory materials: structure, properties and design
    Wang, Xue-Peng
    Liu, Yu-Ting
    Chen, Yong-Jin
    Chen, Nian-Ke
    Li, Xian-Bin
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2020, 53 (11)
  • [38] Scaling properties of phase-change line memory
    杜小锋
    宋三年
    宋志棠
    刘卫丽
    吕士龙
    顾怡峰
    薛维佳
    席韡
    [J]. Chinese Physics B, 2012, 21 (09) : 554 - 558
  • [39] Scaling properties of phase-change line memory
    Du Xiao-Feng
    Song San-Nian
    Song Zhi-Tang
    Liu Wei-Li
    Lu Shi-Long
    Gu Yi-Feng
    Xue Wei-Jia
    Xi Wei
    [J]. CHINESE PHYSICS B, 2012, 21 (09)
  • [40] SURFACE TEMPERATURE WITH TEMPERATURE-DEPENDENT THERMAL PROPERTIES
    LING, FF
    RICE, JS
    [J]. ASLE TRANSACTIONS, 1966, 9 (02): : 195 - +