Temperature-Dependent Thermal Properties of Phase-Change Memory Electrode Materials

被引:18
|
作者
Bozorg-Grayeli, Elah [1 ]
Reifenberg, John P. [2 ]
Panzer, Matthew A. [3 ]
Rowlette, Jeremy A. [4 ]
Goodson, Kenneth E. [1 ]
机构
[1] Stanford Univ, Stanford, CA 94305 USA
[2] Intel Corp, Santa Clara, CA 95054 USA
[3] KLA Tencor, Milpitas, CA 95053 USA
[4] Daylight Solut, San Diego, CA 92128 USA
关键词
Electrode materials; nonvolatile memory; phase-change memory (PCM); thermal boundary resistance (TBR); thermal conductivity; BOUNDARY RESISTANCE;
D O I
10.1109/LED.2011.2158796
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The programming current required to switch a phase-change memory cell depends upon the thermal resistances in the device. In many designs, significant heat loss occurs through the electrode. This letter investigates the thermal properties of a multilayer electrode stack. This material offers greater thermal resistance than single-material electrodes due to the presence of multiple thermal boundary resistances (TBRs), reducing heat loss from the device and potentially lowering the programming current. Picosecond time-domain thermoreflectance interrogates the temperature-dependent thermal conductivity of three as-deposited and postannealed electrode materials: carbon, titanium nitride, and tungsten nitride. These data are used to extract the temperature-dependent, as-deposited, and postannealed TBR in two multilayer electrode stacks: carbon-titanium nitride and tungsten-tungsten nitride. The C-TiN stacks demonstrate an as-deposited TBR of 4.9 m(2)K/GW, increasing to 11.9 m(2)K/GW postanneal. The W-WN(x) stacks demonstrate an as-deposited TBR of 3.9 m(2)K/GW, decreasing to 3.6 m(2)K/GW postanneal. These resistances are equivalent to electrode films with thickness on the order of tens of nanometers.
引用
收藏
页码:1281 / 1283
页数:3
相关论文
共 50 条
  • [21] Heterogeneously structured phase-change materials and memory
    Yang, Wonjun
    Hur, Namwook
    Lim, Dong-Hyeok
    Jeong, Hongsik
    Suh, Joonki
    [J]. JOURNAL OF APPLIED PHYSICS, 2021, 129 (05)
  • [22] THERMAL SHOCK PROBLEM OF PIEZOELECTRIC MATERIALS WITH TEMPERATURE-DEPENDENT PROPERTIES
    Sun, Ting
    Tian, Xiao-geng
    Chen, Li
    Shen, Ya-peng
    [J]. PROCEEDINGS OF THE 2008 SYMPOSIUM ON PIEZOELECTRICITY, ACOUSTIC WAVES AND DEVICE APPLICATIONS, 2008, : 11 - +
  • [23] Topological memory using phase-change materials
    Tominaga, Junji
    [J]. MRS BULLETIN, 2018, 43 (05) : 347 - 351
  • [24] Phase-change materials - Towards a universal memory?
    Wuttig, M
    [J]. NATURE MATERIALS, 2005, 4 (04) : 265 - 266
  • [25] Topological memory using phase-change materials
    Junji Tominaga
    [J]. MRS Bulletin, 2018, 43 : 347 - 351
  • [26] Method for Simultaneous Measurement of Temperature-Dependent Thermal Conductivity of Solid-Liquid Phase of Phase Change Materials
    Xiao, He
    Zhou, Tian
    Xu, Zhangnan
    Shi, Lei
    Sun, Zhiqiang
    [J]. Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2024, 45 (09): : 2759 - 2766
  • [27] Thermoelectric properties of Phase-Change Materials
    Koenig, J. D.
    Boetmer, H.
    Tomforde, Jan
    Bensch, Wolfgang
    [J]. PROCEEDINGS ICT 07: TWENTY-SIXTH INTERNATIONAL CONFERENCE ON THERMOELECTRICS, 2008, : 395 - 398
  • [28] Temperature-dependent thermal properties of a shape memory alloy/MAX phase composite: Experiments and modeling
    Cheng, Feifei
    Hu, Liangfa
    Reddy, Junuthula N.
    Karaman, Ibrahim
    Hoffman, Elizabeth
    Radovic, Miladin
    [J]. ACTA MATERIALIA, 2014, 68 : 267 - 278
  • [29] Effect of Phase-Change Materials on Thermal and Mechanical Properties of Asphalt Mixtures
    Chen, Meizhu
    Wan, Lu
    Lin, Juntao
    [J]. JOURNAL OF TESTING AND EVALUATION, 2012, 40 (05) : 746 - 753
  • [30] Triglycerides as Novel Phase-Change Materials: A Review and Assessment of Their Thermal Properties
    Ravotti, Rebecca
    Worlitschek, Jorg
    Pulham, Colin R.
    Stamatiou, Anastasia
    [J]. MOLECULES, 2020, 25 (23):