ON THE PROBABILISTIC DEGREES OF SYMMETRIC BOOLEAN FUNCTIONS

被引:0
|
作者
Srinivasan, Srikanth [1 ]
Tripathi, Utkarsh [1 ]
Venkitesh, S. [1 ]
机构
[1] Indian Inst Technol, Dept Math, Bombay, Maharashtra, India
关键词
probabilistic degree; symmetric Boolean function; computational complexity; BOUNDED-DEPTH; CIRCUITS; SIZE;
D O I
10.1137/19M1294162
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The probabilistic degree of a Boolean function f : {0, 1}(n) -> {0, 1} is defined to be the smallest d such that there is a random polynomial P of degree at most d that agrees with f at each point with high probability. Introduced by Razborov [Mat. Zametki, 41 (1987), pp. 598-607], upper and lower bounds on probabilistic degrees of Boolean functions-specifically symmetric Boolean functions-have been used to prove explicit lower bounds, design pseudorandom generators, and devise algorithms for combinatorial problems. In this paper, we characterize the probabilistic degrees of all symmetric Boolean functions up to polylogarithmic factors over all fields of fixed characteristic (positive or zero).
引用
收藏
页码:2070 / 2092
页数:23
相关论文
共 50 条
  • [1] SYMMETRIC BOOLEAN FUNCTIONS
    CUNKLE, CH
    AMERICAN MATHEMATICAL MONTHLY, 1963, 70 (08): : 833 - &
  • [2] Symmetric Boolean functions
    Canteaut, A
    Videau, M
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (08) : 2791 - 2811
  • [3] Properties of Symmetric Boolean functions
    Haviarova, L.
    Toman, E.
    JOURNAL OF APPLIED MATHEMATICS STATISTICS AND INFORMATICS, 2016, 12 (01) : 5 - 24
  • [4] On the Symmetric Negabent Boolean Functions
    Sarkar, Sumanta
    PROGRESS IN CRYPTOLOGY - INDOCRYPT 2009, PROCEEDINGS, 2009, 5922 : 136 - 143
  • [5] Sensitivity of symmetric Boolean functions
    Xu, Guoliang
    Zhang, Mengsi
    Zhang, Binbin
    Wang, Tianyin
    Zhang, Yumei
    QUANTUM INFORMATION PROCESSING, 2025, 24 (03)
  • [6] Matriochka symmetric Boolean functions
    Lauradoux, Cedric
    Videau, Marion
    2008 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-6, 2008, : 1631 - +
  • [7] Generalized rotation symmetric and dihedral symmetric boolean functions -: 9 variable boolean functions with nonlinearity 242
    Kavut, Selcuk
    Yucel, Melek Diker
    APPLIED ALGEBRA, ALGEBRAIC ALGORITHMS AND ERROR-CORRECTING CODES, PROCEEDINGS, 2007, 4851 : 321 - 329
  • [8] Decomposition of symmetric and partially symmetric boolean functions in a basis of monotone functions
    L. B. Avgul’
    A. S. Petrochenko
    Cybernetics and Systems Analysis, 1998, 34 : 337 - 350
  • [9] Decomposition of symmetric and partially symmetric Boolean functions in a basis of monotone functions
    Avgul, LB
    Petrochenko, AS
    CYBERNETICS AND SYSTEMS ANALYSIS, 1998, 34 (03) : 337 - 350
  • [10] On one class of symmetric Boolean functions
    Ou, Z.-H., 2013, Editorial Board of Journal on Communications (34):