ON THE PROBABILISTIC DEGREES OF SYMMETRIC BOOLEAN FUNCTIONS

被引:0
|
作者
Srinivasan, Srikanth [1 ]
Tripathi, Utkarsh [1 ]
Venkitesh, S. [1 ]
机构
[1] Indian Inst Technol, Dept Math, Bombay, Maharashtra, India
关键词
probabilistic degree; symmetric Boolean function; computational complexity; BOUNDED-DEPTH; CIRCUITS; SIZE;
D O I
10.1137/19M1294162
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The probabilistic degree of a Boolean function f : {0, 1}(n) -> {0, 1} is defined to be the smallest d such that there is a random polynomial P of degree at most d that agrees with f at each point with high probability. Introduced by Razborov [Mat. Zametki, 41 (1987), pp. 598-607], upper and lower bounds on probabilistic degrees of Boolean functions-specifically symmetric Boolean functions-have been used to prove explicit lower bounds, design pseudorandom generators, and devise algorithms for combinatorial problems. In this paper, we characterize the probabilistic degrees of all symmetric Boolean functions up to polylogarithmic factors over all fields of fixed characteristic (positive or zero).
引用
收藏
页码:2070 / 2092
页数:23
相关论文
共 50 条
  • [31] ALGORITHM FOR RECOGNITION OF SYMMETRIC BOOLEAN FUNCTIONS
    ABDULLAYEV, DA
    YUNUSOV, D
    ENGINEERING CYBERNETICS, 1978, 16 (05): : 164 - 168
  • [32] Results on permutation symmetric Boolean functions
    Zhang Yanjuan
    Deng Yingpu
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2013, 26 (02) : 302 - 312
  • [33] On the algebraic immunity of symmetric Boolean functions
    Braeken, A
    Preneel, B
    PROGRESS IN CRYPTOLOGY - INDOCRYPT 2005, PROCEEDINGS, 2005, 3797 : 35 - 48
  • [34] On the Balanced Elementary Symmetric Boolean Functions
    Qu, Longjiang
    Dai, Qingping
    Li, Chao
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2013, E96A (02) : 663 - 665
  • [35] On some properties of symmetric Boolean functions
    Videau, M
    2004 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2004, : 500 - 500
  • [36] DETECTION OF TOTALLY SYMMETRIC BOOLEAN FUNCTIONS
    SHENG, CL
    IEEE TRANSACTIONS ON ELECTRONIC COMPUTERS, 1965, EC14 (06): : 924 - +
  • [37] PROBABILISTIC MANIPULATION OF BOOLEAN FUNCTIONS USING FREE BOOLEAN DIAGRAMS
    SHEN, A
    DEVADAS, S
    GHOSH, A
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 1995, 14 (01) : 87 - 95
  • [38] The Stochastic Boolean Function Evaluation problem for symmetric Boolean functions
    Gkenosis, Dimitrios
    Grammel, Nathaniel
    Hellerstein, Lisa
    Kletenik, Devorah
    Discrete Applied Mathematics, 2022, 309 : 269 - 277
  • [39] The Stochastic Boolean Function Evaluation problem for symmetric Boolean functions
    Gkenosis, Dimitrios
    Grammel, Nathaniel
    Hellerstein, Lisa
    Kletenik, Devorah
    DISCRETE APPLIED MATHEMATICS, 2022, 309 : 269 - 277
  • [40] Polynomial representations of symmetric partial Boolean functions
    De Graaf, M
    Valiant, P
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2005, 19 (02) : 481 - 488