ON THE PROBABILISTIC DEGREES OF SYMMETRIC BOOLEAN FUNCTIONS

被引:0
|
作者
Srinivasan, Srikanth [1 ]
Tripathi, Utkarsh [1 ]
Venkitesh, S. [1 ]
机构
[1] Indian Inst Technol, Dept Math, Bombay, Maharashtra, India
关键词
probabilistic degree; symmetric Boolean function; computational complexity; BOUNDED-DEPTH; CIRCUITS; SIZE;
D O I
10.1137/19M1294162
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The probabilistic degree of a Boolean function f : {0, 1}(n) -> {0, 1} is defined to be the smallest d such that there is a random polynomial P of degree at most d that agrees with f at each point with high probability. Introduced by Razborov [Mat. Zametki, 41 (1987), pp. 598-607], upper and lower bounds on probabilistic degrees of Boolean functions-specifically symmetric Boolean functions-have been used to prove explicit lower bounds, design pseudorandom generators, and devise algorithms for combinatorial problems. In this paper, we characterize the probabilistic degrees of all symmetric Boolean functions up to polylogarithmic factors over all fields of fixed characteristic (positive or zero).
引用
收藏
页码:2070 / 2092
页数:23
相关论文
共 50 条
  • [21] RESULTS ON PERMUTATION SYMMETRIC BOOLEAN FUNCTIONS
    ZHANG Yanjuan
    DENG Yingpu
    Journal of Systems Science & Complexity, 2013, 26 (02) : 302 - 312
  • [22] On the symmetric property of homogeneous Boolean functions
    Qu, CX
    Seberry, J
    Pieprzyk, J
    INFORMATION SECURITY AND PRIVACY, 1999, 1587 : 26 - 35
  • [23] Results on permutation symmetric Boolean functions
    Yanjuan Zhang
    Yingpu Deng
    Journal of Systems Science and Complexity, 2013, 26 : 302 - 312
  • [24] TAYLOR EXPANSIONS OF SYMMETRIC BOOLEAN FUNCTIONS
    DAVIO, M
    PHILIPS RESEARCH REPORTS, 1973, 28 (05): : 466 - 474
  • [25] ON IDENTIFICATION OF TOTALLY SYMMETRIC BOOLEAN FUNCTIONS
    BISWAS, NN
    IEEE TRANSACTIONS ON COMPUTERS, 1970, C 19 (07) : 645 - &
  • [26] CIRCUIT DEPTH OF SYMMETRIC BOOLEAN FUNCTIONS
    MCCOLL, WF
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1978, 17 (01) : 108 - 115
  • [27] Hamming weights of symmetric Boolean functions
    Cusick, Thomas W.
    DISCRETE APPLIED MATHEMATICS, 2016, 215 : 14 - 19
  • [28] On the Fourier spectrum of symmetric Boolean functions
    Mihail N. Kolountzakis
    Richard J. Lipton
    Evangelos Markakis
    Aranyak Mehta
    Nisheeth K. Vishnoi
    Combinatorica, 2009, 29 : 363 - 387
  • [29] Quadratic rotation symmetric Boolean functions
    Chirvasitu, Alexandru
    Cusick, Thomas W.
    DISCRETE APPLIED MATHEMATICS, 2024, 343 : 91 - 105
  • [30] Regular symmetric groups of boolean functions
    Grech, Mariusz
    DISCRETE MATHEMATICS, 2010, 310 (21) : 2877 - 2882