Sensitivity of symmetric Boolean functions

被引:0
|
作者
Xu, Guoliang [1 ]
Zhang, Mengsi [1 ]
Zhang, Binbin [2 ]
Wang, Tianyin [3 ]
Zhang, Yumei [4 ]
机构
[1] Luoyang Normal Univ, Coll Informat Technol, Luoyang 471934, Peoples R China
[2] Shihezi Univ, Coll Sci, Shihezi 832003, Peoples R China
[3] Luoyang Normal Univ, Coll Math Sci, Luoyang 471934, Peoples R China
[4] Luoyang Normal Univ, Conservatory Mus, Luoyang 471934, Peoples R China
基金
中国国家自然科学基金;
关键词
DECISION TREE COMPLEXITY; PROMISE PROBLEMS; QUANTUM;
D O I
10.1007/s11128-025-04714-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In quantum computing theory, the well-known Deutsch's problem and Deutsch-Jozsa problem can be equivalent to symmetric Boolean functions. Meanwhile, sensitivity of Boolean functions is a quite important complexity measure in the query model. So far, whether symmetry means high-sensitivity problems is still considered as a challenge. In symmetric setting, based on whether all inputs in {0,1}n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{0,1\}<^>{n}$$\end{document} are defined, this paper investigates sensitivity of total and partial Boolean functions, respectively. Firstly, we point out that the computation of sensitivity requires at most n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n+1$$\end{document} classical queries or n quantum queries. Secondly, we show that the lower bound of sensitivity is not less than n2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{n}{2}$$\end{document} except for the sensitivity 0. Finally, we discover and prove some non-trivial bounds on the number of symmetric (total and partial) Boolean functions with each possible sensitivity.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] On the Sensitivity of Boolean and Multiple-Valued Symmetric Functions
    Butler, Jon T.
    Sasao, Tsutomu
    2022 IEEE 52ND INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC (ISMVL 2022), 2022, : 125 - 130
  • [2] SYMMETRIC BOOLEAN FUNCTIONS
    CUNKLE, CH
    AMERICAN MATHEMATICAL MONTHLY, 1963, 70 (08): : 833 - &
  • [3] Symmetric Boolean functions
    Canteaut, A
    Videau, M
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (08) : 2791 - 2811
  • [4] Properties of Symmetric Boolean functions
    Haviarova, L.
    Toman, E.
    JOURNAL OF APPLIED MATHEMATICS STATISTICS AND INFORMATICS, 2016, 12 (01) : 5 - 24
  • [5] On the Symmetric Negabent Boolean Functions
    Sarkar, Sumanta
    PROGRESS IN CRYPTOLOGY - INDOCRYPT 2009, PROCEEDINGS, 2009, 5922 : 136 - 143
  • [6] Matriochka symmetric Boolean functions
    Lauradoux, Cedric
    Videau, Marion
    2008 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-6, 2008, : 1631 - +
  • [7] Generalized rotation symmetric and dihedral symmetric boolean functions -: 9 variable boolean functions with nonlinearity 242
    Kavut, Selcuk
    Yucel, Melek Diker
    APPLIED ALGEBRA, ALGEBRAIC ALGORITHMS AND ERROR-CORRECTING CODES, PROCEEDINGS, 2007, 4851 : 321 - 329
  • [8] Decomposition of symmetric and partially symmetric boolean functions in a basis of monotone functions
    L. B. Avgul’
    A. S. Petrochenko
    Cybernetics and Systems Analysis, 1998, 34 : 337 - 350
  • [9] Decomposition of symmetric and partially symmetric Boolean functions in a basis of monotone functions
    Avgul, LB
    Petrochenko, AS
    CYBERNETICS AND SYSTEMS ANALYSIS, 1998, 34 (03) : 337 - 350
  • [10] On one class of symmetric Boolean functions
    Ou, Z.-H., 2013, Editorial Board of Journal on Communications (34):