Sensitivity of symmetric Boolean functions

被引:0
|
作者
Xu, Guoliang [1 ]
Zhang, Mengsi [1 ]
Zhang, Binbin [2 ]
Wang, Tianyin [3 ]
Zhang, Yumei [4 ]
机构
[1] Luoyang Normal Univ, Coll Informat Technol, Luoyang 471934, Peoples R China
[2] Shihezi Univ, Coll Sci, Shihezi 832003, Peoples R China
[3] Luoyang Normal Univ, Coll Math Sci, Luoyang 471934, Peoples R China
[4] Luoyang Normal Univ, Conservatory Mus, Luoyang 471934, Peoples R China
基金
中国国家自然科学基金;
关键词
DECISION TREE COMPLEXITY; PROMISE PROBLEMS; QUANTUM;
D O I
10.1007/s11128-025-04714-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In quantum computing theory, the well-known Deutsch's problem and Deutsch-Jozsa problem can be equivalent to symmetric Boolean functions. Meanwhile, sensitivity of Boolean functions is a quite important complexity measure in the query model. So far, whether symmetry means high-sensitivity problems is still considered as a challenge. In symmetric setting, based on whether all inputs in {0,1}n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{0,1\}<^>{n}$$\end{document} are defined, this paper investigates sensitivity of total and partial Boolean functions, respectively. Firstly, we point out that the computation of sensitivity requires at most n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n+1$$\end{document} classical queries or n quantum queries. Secondly, we show that the lower bound of sensitivity is not less than n2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{n}{2}$$\end{document} except for the sensitivity 0. Finally, we discover and prove some non-trivial bounds on the number of symmetric (total and partial) Boolean functions with each possible sensitivity.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] RESULTS ON PERMUTATION SYMMETRIC BOOLEAN FUNCTIONS
    ZHANG Yanjuan
    DENG Yingpu
    Journal of Systems Science & Complexity, 2013, 26 (02) : 302 - 312
  • [22] ON IDENTIFICATION OF TOTALLY SYMMETRIC BOOLEAN FUNCTIONS
    BISWAS, NN
    IEEE TRANSACTIONS ON COMPUTERS, 1970, C 19 (07) : 645 - &
  • [23] On the symmetric property of homogeneous Boolean functions
    Qu, CX
    Seberry, J
    Pieprzyk, J
    INFORMATION SECURITY AND PRIVACY, 1999, 1587 : 26 - 35
  • [24] Results on permutation symmetric Boolean functions
    Yanjuan Zhang
    Yingpu Deng
    Journal of Systems Science and Complexity, 2013, 26 : 302 - 312
  • [25] TAYLOR EXPANSIONS OF SYMMETRIC BOOLEAN FUNCTIONS
    DAVIO, M
    PHILIPS RESEARCH REPORTS, 1973, 28 (05): : 466 - 474
  • [26] CIRCUIT DEPTH OF SYMMETRIC BOOLEAN FUNCTIONS
    MCCOLL, WF
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1978, 17 (01) : 108 - 115
  • [27] Hamming weights of symmetric Boolean functions
    Cusick, Thomas W.
    DISCRETE APPLIED MATHEMATICS, 2016, 215 : 14 - 19
  • [28] On the Fourier spectrum of symmetric Boolean functions
    Mihail N. Kolountzakis
    Richard J. Lipton
    Evangelos Markakis
    Aranyak Mehta
    Nisheeth K. Vishnoi
    Combinatorica, 2009, 29 : 363 - 387
  • [29] Quadratic rotation symmetric Boolean functions
    Chirvasitu, Alexandru
    Cusick, Thomas W.
    DISCRETE APPLIED MATHEMATICS, 2024, 343 : 91 - 105
  • [30] ON THE PROBABILISTIC DEGREES OF SYMMETRIC BOOLEAN FUNCTIONS
    Srinivasan, Srikanth
    Tripathi, Utkarsh
    Venkitesh, S.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2021, 35 (03) : 2070 - 2092