Sensitivity of symmetric Boolean functions

被引:0
|
作者
Xu, Guoliang [1 ]
Zhang, Mengsi [1 ]
Zhang, Binbin [2 ]
Wang, Tianyin [3 ]
Zhang, Yumei [4 ]
机构
[1] Luoyang Normal Univ, Coll Informat Technol, Luoyang 471934, Peoples R China
[2] Shihezi Univ, Coll Sci, Shihezi 832003, Peoples R China
[3] Luoyang Normal Univ, Coll Math Sci, Luoyang 471934, Peoples R China
[4] Luoyang Normal Univ, Conservatory Mus, Luoyang 471934, Peoples R China
基金
中国国家自然科学基金;
关键词
DECISION TREE COMPLEXITY; PROMISE PROBLEMS; QUANTUM;
D O I
10.1007/s11128-025-04714-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In quantum computing theory, the well-known Deutsch's problem and Deutsch-Jozsa problem can be equivalent to symmetric Boolean functions. Meanwhile, sensitivity of Boolean functions is a quite important complexity measure in the query model. So far, whether symmetry means high-sensitivity problems is still considered as a challenge. In symmetric setting, based on whether all inputs in {0,1}n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{0,1\}<^>{n}$$\end{document} are defined, this paper investigates sensitivity of total and partial Boolean functions, respectively. Firstly, we point out that the computation of sensitivity requires at most n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n+1$$\end{document} classical queries or n quantum queries. Secondly, we show that the lower bound of sensitivity is not less than n2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{n}{2}$$\end{document} except for the sensitivity 0. Finally, we discover and prove some non-trivial bounds on the number of symmetric (total and partial) Boolean functions with each possible sensitivity.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Regular symmetric groups of boolean functions
    Grech, Mariusz
    DISCRETE MATHEMATICS, 2010, 310 (21) : 2877 - 2882
  • [32] ALGORITHM FOR RECOGNITION OF SYMMETRIC BOOLEAN FUNCTIONS
    ABDULLAYEV, DA
    YUNUSOV, D
    ENGINEERING CYBERNETICS, 1978, 16 (05): : 164 - 168
  • [33] Results on permutation symmetric Boolean functions
    Zhang Yanjuan
    Deng Yingpu
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2013, 26 (02) : 302 - 312
  • [34] On some properties of symmetric Boolean functions
    Videau, M
    2004 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2004, : 500 - 500
  • [35] DETECTION OF TOTALLY SYMMETRIC BOOLEAN FUNCTIONS
    SHENG, CL
    IEEE TRANSACTIONS ON ELECTRONIC COMPUTERS, 1965, EC14 (06): : 924 - +
  • [36] On the algebraic immunity of symmetric Boolean functions
    Braeken, A
    Preneel, B
    PROGRESS IN CRYPTOLOGY - INDOCRYPT 2005, PROCEEDINGS, 2005, 3797 : 35 - 48
  • [37] On the Balanced Elementary Symmetric Boolean Functions
    Qu, Longjiang
    Dai, Qingping
    Li, Chao
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2013, E96A (02) : 663 - 665
  • [38] Exclusion sensitivity of Boolean functions
    Broman, Erik I.
    Garban, Christophe
    Steif, Jeffrey E.
    PROBABILITY THEORY AND RELATED FIELDS, 2013, 155 (3-4) : 621 - 663
  • [39] Exclusion sensitivity of Boolean functions
    Erik I. Broman
    Christophe Garban
    Jeffrey E. Steif
    Probability Theory and Related Fields, 2013, 155 : 621 - 663
  • [40] A SENSITIVITY ESTIMATE FOR BOOLEAN FUNCTIONS
    BRYC, W
    SMOLENSKI, W
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1994, 28 (05) : 45 - 51