Moving Object Detection on RGB-D Videos Using Graph Regularized Spatiotemporal RPCA

被引:24
|
作者
Javed, Sajid [1 ]
Bouwmans, Thierry [2 ]
Sultana, Maryam [1 ]
Jung, Soon Ki [1 ]
机构
[1] Kyungpook Natl Univ, Sch Comp Sci & Engn, 80 Daehak Ro, Daegu 702701, South Korea
[2] Univ La Rochelle, Lab MIA Math Image & Applicat, F-17000 La Rochelle, France
基金
新加坡国家研究基金会;
关键词
LOW-RANK;
D O I
10.1007/978-3-319-70742-6_22
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Moving object detection is the fundamental step for various computer vision tasks. Many existing methods are still limited in accurately detecting the moving objects because of complex background scenes such as illumination condition, color saturation, and shadows etc. RPCA models have shown potential for moving object detection, where input data matrix is decomposed into a low-rank matrix representing the background image and a sparse component identifying moving objects. However, RPCA methods are not ideal for real-time processing because of the batch processing issues. These methods also show a performance degradation without encoding spatiotemporal and depth information. To address these problems, we investigate the performance of online Spatiotemporal RPCA (SRPCA) algorithm [1] for moving object detection using RGB-D videos. SRPCA is a graph regularized algorithm which preserves the low-rank spatiotemporal information in the form of dual spectral graphs. This graph regularized information is then encoded into the objective function which is solved using online optimization. Experiments show competitive results as compared to four state-of-the-art sub-space learning methods.
引用
收藏
页码:230 / 241
页数:12
相关论文
共 50 条
  • [1] Salient Object Detection in RGB-D Videos
    Mou, Ao
    Lu, Yukang
    He, Jiahao
    Min, Dingyao
    Fu, Keren
    Zhao, Qijun
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 6660 - 6675
  • [2] Moving Object Detection Using Adaptive Blind Update and RGB-D Camera
    Dorudian, Navid
    Lauria, Stanislao
    Swift, Stephen
    IEEE SENSORS JOURNAL, 2019, 19 (18) : 8191 - 8201
  • [3] Fast 3D Object Detection with RGB-D Images Using Graph Convolutional Network
    Takahashi, Masahiro
    Kitsukawa, Takumi
    Moro, Alessandro
    Umeda, Kazunori
    2022 IEEE/SICE INTERNATIONAL SYMPOSIUM ON SYSTEM INTEGRATION (SII 2022), 2022, : 395 - 400
  • [4] Moving Object Detection in Complex Scene Using Spatiotemporal Structured-Sparse RPCA
    Javed, Sajid
    Mahmood, Arif
    Al-Maadeed, Somaya
    Bouwmans, Thierry
    Jung, Soon Ki
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (02) : 1007 - 1022
  • [5] Joint Object Affordance Reasoning and Segmentation in RGB-D Videos
    Thermos, Spyridon
    Potamianos, Gerasimos
    Daras, Petros
    IEEE ACCESS, 2021, 9 : 89699 - 89713
  • [6] A computational framework for attentional object discovery in RGB-D videos
    Garcia, German Martin
    Pavel, Mircea
    Frintrop, Simone
    COGNITIVE PROCESSING, 2017, 18 (02) : 169 - 182
  • [7] A computational framework for attentional object discovery in RGB-D videos
    Germán Martín García
    Mircea Pavel
    Simone Frintrop
    Cognitive Processing, 2017, 18 : 169 - 182
  • [8] Fall Detection in RGB-D Videos for Elderly Care
    Yun, Yixiao
    Innocenti, Christopher
    Nero, Gustav
    Linden, Henrik
    Gu, Irene Yu-Hua
    2015 17TH INTERNATIONAL CONFERENCE ON E-HEALTH NETWORKING, APPLICATION & SERVICES (HEALTHCOM), 2015, : 422 - 427
  • [9] RGB-D salient object detection: A survey
    Tao Zhou
    Deng-Ping Fan
    Ming-Ming Cheng
    Jianbing Shen
    Ling Shao
    ComputationalVisualMedia, 2021, 7 (01) : 37 - 69
  • [10] RGB-D salient object detection: A survey
    Zhou, Tao
    Fan, Deng-Ping
    Cheng, Ming-Ming
    Shen, Jianbing
    Shao, Ling
    COMPUTATIONAL VISUAL MEDIA, 2021, 7 (01) : 37 - 69