Boundedness of some operators on grand generalized Morrey spaces over non-homogeneous spaces

被引:2
|
作者
He, Suixin [1 ]
Tao, Shuangping [1 ]
机构
[1] Northwest Normal Univ, Coll Math & Stat, Lanzhou 730070, Peoples R China
来源
AIMS MATHEMATICS | 2022年 / 7卷 / 01期
基金
中国国家自然科学基金;
关键词
non-doubling measure; maximal operator; fractional integral operator; theta-type Calderon-Zygmund operator; grand generalized Morrey space; CALDERON-ZYGMUND OPERATORS; COMMUTATORS;
D O I
10.3934/math.2022060
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to obtain the boundedness of some operator on grand generalized Morrey space L-mu(p),phi,phi) (G) over non-homogeneous spaces, where G subset of R-n is a bounded domain. Under assumption that functions phi and phi satisfy certain conditions, the authors prove that the Hardy-Littlewood maximal operator, fractional integral operators and theta-type Calderon-Zygmund operators are bounded on the non-homogeneous grand generalized Morrey space L-mu(p),phi,phi) (G). Moreover, the boundedness of commutator [b, T-theta(G)] which is generated by theta-type Calderon-Zygmund operator T-theta and b is an element of RBMO(mu) on spaces L-mu(p),phi,phi) (G) is also established.
引用
收藏
页码:1000 / 1014
页数:15
相关论文
共 50 条