Boundedness of Sublinear Operators and Commutators on Generalized Morrey Spaces

被引:0
|
作者
Vagif S. Guliyev
Seymur S. Aliyev
Turhan Karaman
Parviz S. Shukurov
机构
[1] Ahi Evran University,Department of Mathematics
[2] Academy of Sciences of Azerbaijan,Institute of Mathematics and Mechanics
来源
关键词
Primary 42B20; 42B25; 42B35; Sublinear operator; generalized Morrey space; Calderón–Zygmund operator; Riesz potential operator; fractional maximal operator; commutator; BMO; Littlewood–Paley operator; Marcinkiewicz operator; Bochner–Riesz operator;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper the authors study the boundedness for a large class of sublinear operators \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T_{\alpha}, \alpha \in [0,n)}$$\end{document} generated by Calderón–Zygmund operators (α = 0) and generated by Riesz potential operator (α > 0) on generalized Morrey spaces \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M_{p,\varphi}}$$\end{document} . As an application of the above result, the boundeness of the commutator of sublinear operators \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T_{b,\alpha}, \alpha \in [0,n)}$$\end{document} on generalized Morrey spaces is also obtained. In the case \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${b \in BMO}$$\end{document} and Tb,α is a sublinear operator, we find the sufficient conditions on the pair \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(\varphi_1,\varphi_2)}$$\end{document} which ensures the boundedness of the operators \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T_{b,\alpha}, \alpha \in [0,n)}$$\end{document} from one generalized Morrey space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M_{p,\varphi_1}}$$\end{document} to another \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M_{q,\varphi_2}}$$\end{document} with 1/p − 1/q = α/n. In all the cases the conditions for the boundedness are given in terms of Zygmund-type integral inequalities on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(\varphi_1,\varphi_2)}$$\end{document} , which do not assume any assumption on monotonicity of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varphi_1, \, \varphi_2}$$\end{document} in r. Conditions of these theorems are satisfied by many important operators in analysis, in particular, Littlewood–Paley operator, Marcinkiewicz operator and Bochner–Riesz operator.
引用
下载
收藏
相关论文
共 50 条
  • [1] Boundedness of Sublinear Operators and Commutators on Generalized Morrey Spaces
    Guliyev, Vagif S.
    Aliyev, Seymur S.
    Karaman, Turhan
    Shukurov, Parviz S.
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2011, 71 (03) : 327 - 355
  • [2] Boundedness of sublinear operators and their commutators on generalized central Morrey spaces
    Yun Fan
    Journal of Inequalities and Applications, 2013
  • [3] Boundedness of a Class of Sublinear Operators and Their Commutators on Generalized Morrey Spaces
    Guliyev, Vagif S.
    Aliyev, Seymur S.
    Karaman, Turhan
    ABSTRACT AND APPLIED ANALYSIS, 2011,
  • [4] Boundedness of sublinear operators and their commutators on generalized central Morrey spaces
    Fan, Yun
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [5] Boundedness of some sublinear operators and their commutators on generalized local Morrey spaces
    Balakishiyev, A. S.
    Gadjieva, E. A.
    Gurbuz, F.
    Serbetci, A.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2018, 63 (11) : 1620 - 1641
  • [6] BOUNDEDNESS CRITERION FOR SUBLINEAR OPERATORS AND COMMUTATORS ON GENERALIZED MIXED MORREY SPACES
    Wei, Mingquan
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2022, 12 (06): : 2349 - 2369
  • [7] GENERALIZED WEIGHTED MORREY SPACES AND HIGHER ORDER COMMUTATORS OF SUBLINEAR OPERATORS
    Guliyev, V. S.
    EURASIAN MATHEMATICAL JOURNAL, 2012, 3 (03): : 33 - 61
  • [8] COMMUTATORS OF SUBLINEAR OPERATORS IN GRAND MORREY SPACES
    Kokilashvili, Vakhtang
    Meskhi, Alexander
    Rafeiro, Humberto
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2019, 56 (02) : 211 - 232
  • [9] Boundedness of some sublinear operators and commutators on Morrey-Herz spaces with variable exponents
    Lu, Yan
    Zhu, Yue Ping
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2014, 64 (04) : 969 - 987
  • [10] On Boundedness of Sublinear Operators in Weighted Morrey Spaces
    Mustafayev, R. Ch.
    AZERBAIJAN JOURNAL OF MATHEMATICS, 2012, 2 (01): : 66 - 79