The computational complexity of distance functions of two-dimensional domains

被引:6
|
作者
Chou, AW
Ko, KI [1 ]
机构
[1] SUNY Stony Brook, Dept Comp Sci, Stony Brook, NY 11794 USA
[2] Clark Univ, Dept Math & Comp Sci, Worcester, MA 01610 USA
基金
美国国家科学基金会;
关键词
computational complexity; polynomial-time computability; two-dimensional domain; distance function; NP;
D O I
10.1016/j.tcs.2004.11.016
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the computational complexity of the distance function associated with a polynomial-time computable two-dimensional domains, in the context of the Turing machine-based complexity theory of real functions. It is proved that the distance function is not necessarily computable even if a two-dimensional domain is polynomial-time recognizable. On the other hand, if both the domain and its complement are strongly polynomial-time recognizable, then the distance function is polynomial-time computable if and only if P = NP. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:360 / 369
页数:10
相关论文
共 50 条
  • [41] On estimation of the image complexity by two-dimensional variations
    Milyukova, O. P.
    Chochia, P. A.
    JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS, 2013, 58 (06) : 628 - 635
  • [42] On estimation of the image complexity by two-dimensional variations
    O. P. Milyukova
    P. A. Chochia
    Journal of Communications Technology and Electronics, 2013, 58 : 628 - 635
  • [43] Revisit on holographic complexity in two-dimensional gravity
    Rong-Gen Cai
    Song He
    Shao-Jiang Wang
    Yu-Xuan Zhang
    Journal of High Energy Physics, 2020
  • [44] Maximal pattern complexity of two-dimensional words
    Kamae, Teturo
    Rao, Hui
    Xue, Yu-Mei
    THEORETICAL COMPUTER SCIENCE, 2006, 359 (1-3) : 15 - 27
  • [45] Unraveling the morphological complexity of two-dimensional macromolecules
    Zhao, Yingjie
    Qin, Jianshu
    Wang, Shijun
    Xu, Zhiping
    PATTERNS, 2022, 3 (06):
  • [46] Revisit on holographic complexity in two-dimensional gravity
    Cai, Rong-Gen
    He, Song
    Wang, Shao-Jiang
    Zhang, Yu-Xuan
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (08)
  • [47] On the two-dimensional theta functions of the Borweins
    Alaca, Ayse
    Alaca, Saban
    Williams, Kenneth S.
    ACTA ARITHMETICA, 2006, 124 (02) : 177 - 195
  • [48] ON THE NUMBER OF TWO-DIMENSIONAL THRESHOLD FUNCTIONS
    Alekseyev, Max A.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2010, 24 (04) : 1617 - 1631
  • [49] Finsler functions for two-dimensional sprays
    Crampin, Mike
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2014, 85 (3-4): : 435 - 452
  • [50] Azimuthal jittered sampling of bandlimited functions in the two-dimensional Fourier transform and the Hankel transform domains
    Sun, Ao
    Liang, Zi-Yue
    Liu, Wen-Hua
    Li, Jing-Chi
    Wu, An-Yang
    Shi, Xi-Ya
    Chen, Yun-Jie
    Zhang, Zhi-Chao
    OPTIK, 2021, 242 (242):