The computational complexity of distance functions of two-dimensional domains

被引:6
|
作者
Chou, AW
Ko, KI [1 ]
机构
[1] SUNY Stony Brook, Dept Comp Sci, Stony Brook, NY 11794 USA
[2] Clark Univ, Dept Math & Comp Sci, Worcester, MA 01610 USA
基金
美国国家科学基金会;
关键词
computational complexity; polynomial-time computability; two-dimensional domain; distance function; NP;
D O I
10.1016/j.tcs.2004.11.016
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the computational complexity of the distance function associated with a polynomial-time computable two-dimensional domains, in the context of the Turing machine-based complexity theory of real functions. It is proved that the distance function is not necessarily computable even if a two-dimensional domain is polynomial-time recognizable. On the other hand, if both the domain and its complement are strongly polynomial-time recognizable, then the distance function is polynomial-time computable if and only if P = NP. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:360 / 369
页数:10
相关论文
共 50 条
  • [21] Grammatical complexity for two-dimensional maps
    Hagiwara, R
    Shudo, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (44): : 10545 - 10559
  • [22] Complexity of Sets of Two-Dimensional Patterns
    Prusa, Daniel
    Implementation and Application of Automata, 2016, 9705 : 236 - 247
  • [23] TWO-DIMENSIONAL DARBOUX FUNCTIONS
    CEDER, J
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 1983, 28 (09): : 795 - 802
  • [24] On two-dimensional Bessel functions
    Korsch, H. J.
    Klumpp, A.
    Witthaut, D.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (48): : 14947 - 14964
  • [25] Experiments on the distance of two-dimensional samples
    Noszaly, Csaba
    ANNALES MATHEMATICAE ET INFORMATICAE, 2012, 39 : 193 - 206
  • [26] Computational Prediction to Two-Dimensional SnAs
    周大伟
    郑扬冰
    濮春英
    王卓
    唐鑫
    Chinese Physics Letters, 2018, (10) : 72 - 75
  • [27] The Computational Design of Two-Dimensional Materials
    Miller, Daniel P.
    Phillips, Adam
    Ludowieg, Herbert
    Swihart, Sarah
    Autschbach, Jochen
    Zurek, Eva
    JOURNAL OF CHEMICAL EDUCATION, 2019, 96 (10) : 2308 - 2314
  • [28] Computational Prediction to Two-Dimensional SnAs
    周大伟
    郑扬冰
    濮春英
    王卓
    唐鑫
    Chinese Physics Letters, 2018, 35 (10) : 72 - 75
  • [29] Computational Prediction to Two-Dimensional SnAs
    Zhou, Dawei
    Zheng, Yangbing
    Pu, Chunying
    Wang, Zhuo
    Tang, Xin
    CHINESE PHYSICS LETTERS, 2018, 35 (10)
  • [30] SMALLNESS OF THE SET OF CRITICAL VALUES OF DISTANCE FUNCTIONS IN TWO-DIMENSIONAL EUCLIDEAN AND RIEMANNIAN SPACES
    Rataj, Jan
    Zajicek, Ludek
    MATHEMATIKA, 2020, 66 (02) : 297 - 324