The computational complexity of distance functions of two-dimensional domains

被引:6
|
作者
Chou, AW
Ko, KI [1 ]
机构
[1] SUNY Stony Brook, Dept Comp Sci, Stony Brook, NY 11794 USA
[2] Clark Univ, Dept Math & Comp Sci, Worcester, MA 01610 USA
基金
美国国家科学基金会;
关键词
computational complexity; polynomial-time computability; two-dimensional domain; distance function; NP;
D O I
10.1016/j.tcs.2004.11.016
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the computational complexity of the distance function associated with a polynomial-time computable two-dimensional domains, in the context of the Turing machine-based complexity theory of real functions. It is proved that the distance function is not necessarily computable even if a two-dimensional domain is polynomial-time recognizable. On the other hand, if both the domain and its complement are strongly polynomial-time recognizable, then the distance function is polynomial-time computable if and only if P = NP. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:360 / 369
页数:10
相关论文
共 50 条