Investigation on fracture behavior of polymer-bonded explosives under compression using a viscoelastic phase-field fracture method

被引:18
|
作者
Huang, Kai [1 ,2 ,3 ]
Yan, Jia [1 ]
Shen, Rilin [1 ]
Wan, Yulin [1 ]
Li, Yukun [1 ]
Ge, Hao [1 ]
Yu, Hongjun [1 ]
Guo, Licheng [1 ]
机构
[1] Harbin Inst Technol, Dept Astronaut Sci & Mech, Harbin 150001, Peoples R China
[2] Harbin Inst Technol, Inst Adv Ceram, Harbin 150001, Peoples R China
[3] Xi An Jiao Tong Univ, State Key Lab Strength & Vibrat Mech Struct, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
Polymer-bonded explosives (PBXs); Phase-field fracture (PFF) method; Compression loading; Viscoelasticity; Fracture; BRITTLE-FRACTURE; STABILITY ANALYSIS; FAILURE; MODEL; DAMAGE; MECHANICS; PROPAGATION; CRACKS;
D O I
10.1016/j.engfracmech.2022.108411
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Polymer-bonded explosives (PBXs) containing the energetic materials embedded in viscoelastic polymer matrix are often subjected to compressive loads in service, such as projectile penetration and drop. This study aims to investigate the fracture behavior of PBXs under compression by implementing a viscoelastic phase-field fracture (PFF) method. The mesh size and characteristic length scale of the present model are determined and further validated by comparing with experimental results. The influence of the viscoelasticity of the polymer matrix and heterogeneous microstructures on the fracture behavior of PBXs is comprehensively discussed. The results show that the strength and stiffness increase with an increasing strain rate; however, the failure strain increases at first and then decreases, which shows typical strain rate sensitivity. It is also found that the size and volume fraction of particulates have different effects on the fracture behavior of PBXs, i.e., the failure strength decreases with the increase of particulate size, but increases with the increase of particulate volume fraction. This study could lay the foundation for optimizing the structural design of high-performance PBXs.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] A phase-field fracture model for creep-fatigue behavior
    Huang, Xin
    Xie, Qikun
    Li, Shaolin
    Qi, Hongyu
    Yang, Xiaoguang
    Shi, Duoqi
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2024, 132
  • [32] Incremental alternating algorithm for damage and fracture modeling using phase-field method
    Tran, Thanh Hai Tuan
    Rahmoun, Jamila
    Naceur, Hakim
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2024, 38 (03) : 1385 - 1392
  • [33] Phase-field modeling of fracture in viscoelastic-viscoplastic thermoset nanocomposites under cyclic and monolithic loading
    Arash, Behrouz
    Zakavati, Shadab
    Bahtiri, Betim
    Jux, Maximilian
    Rolfes, Raimund
    ENGINEERING WITH COMPUTERS, 2025, 41 (01) : 681 - 701
  • [34] Adaptive method for phase-field fracture using a volume weighted Quickselect algorithm
    Kai Xie
    Ruijie Zhang
    Zhongxin Li
    Zhilin Wu
    International Journal of Fracture, 2023, 242 : 247 - 263
  • [35] Incremental alternating algorithm for damage and fracture modeling using phase-field method
    Thanh Hai Tuan Tran
    Jamila Rahmoun
    Hakim Naceur
    Journal of Mechanical Science and Technology, 2024, 38 : 1385 - 1392
  • [36] Adaptive method for phase-field fracture using a volume weighted Quickselect algorithm
    Xie, Kai
    Zhang, Ruijie
    Li, Zhongxin
    Wu, Zhilin
    INTERNATIONAL JOURNAL OF FRACTURE, 2023, 242 (02) : 247 - 263
  • [37] Fracture behavior of shale containing two parallel veins under semi-circular bend test using a phase-field method
    Huang, Da
    Yang, Yun-Yun
    Song, Yi-Xiang
    Wu, Zhi-Jun
    Yang, Yong-Tao
    Tang, Xuhai
    Cen, Duofeng
    ENGINEERING FRACTURE MECHANICS, 2022, 267
  • [38] A Bayesian estimation method for variational phase-field fracture problems
    Khodadadian, Amirreza
    Noii, Nima
    Parvizi, Maryam
    Abbaszadeh, Mostafa
    Wick, Thomas
    Heitzinger, Clemens
    COMPUTATIONAL MECHANICS, 2020, 66 (04) : 827 - 849
  • [39] An enriched phase-field method for the efficient simulation of fracture processes
    Loehnert, Stefan
    Krueger, Christian
    Klempt, Verena
    Munk, Lukas
    COMPUTATIONAL MECHANICS, 2023, 71 (05) : 1015 - 1039
  • [40] A Bayesian estimation method for variational phase-field fracture problems
    Amirreza Khodadadian
    Nima Noii
    Maryam Parvizi
    Mostafa Abbaszadeh
    Thomas Wick
    Clemens Heitzinger
    Computational Mechanics, 2020, 66 : 827 - 849