Adaptive method for phase-field fracture using a volume weighted Quickselect algorithm

被引:0
|
作者
Kai Xie
Ruijie Zhang
Zhongxin Li
Zhilin Wu
机构
[1] Nanjing University of Science and Technology,School of Mechanical Engineering
来源
关键词
Adaptive mesh refinement; Phase-field fracture; Finite element method; Quickselect algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
The phase-field fracture method (PFM) requires an extremely fine mesh to accurately capture the crack topology, which is computationally expensive. In this work, a new adaptive mesh refinement method is proposed for phase-field fracture. Based on the phase field increment, a volume weighted Quickselect algorithm is used to determine the coarsen region and the refined region. The speed of the crack propagation is predicted to control the size of the refined region, which reduces unnecessary degrees of freedom. Several benchmark numerical examples are simulated and the results demonstrate the efficiency and accuracy of the proposed method. In the numerical examples, the computational time using this method is reduced by about 90% compared with the standard PFM.
引用
收藏
页码:247 / 263
页数:16
相关论文
共 50 条
  • [1] Adaptive method for phase-field fracture using a volume weighted Quickselect algorithm
    Xie, Kai
    Zhang, Ruijie
    Li, Zhongxin
    Wu, Zhilin
    INTERNATIONAL JOURNAL OF FRACTURE, 2023, 242 (02) : 247 - 263
  • [2] An adaptive local algorithm for solving the phase-field evolution equation in the phase-field model for fracture
    Wang, Qiao
    Yue, Qiang
    Huang, Chengbin
    Zhou, Wei
    Chang, Xiaolin
    COMPUTATIONAL MATERIALS SCIENCE, 2022, 214
  • [3] Incremental alternating algorithm for damage and fracture modeling using phase-field method
    Tran, Thanh Hai Tuan
    Rahmoun, Jamila
    Naceur, Hakim
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2024, 38 (03) : 1385 - 1392
  • [4] Incremental alternating algorithm for damage and fracture modeling using phase-field method
    Thanh Hai Tuan Tran
    Jamila Rahmoun
    Hakim Naceur
    Journal of Mechanical Science and Technology, 2024, 38 : 1385 - 1392
  • [5] A spatio-temporal adaptive phase-field fracture method
    Labanda, Nicols A.
    Espath, Luis
    Calo, Victor M.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 392
  • [6] A spatially adaptive phase-field model of fracture
    Phansalkar, Dhananjay
    Weinberg, Kerstin
    Ortiz, Michael
    Leyendecker, Sigrid
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 395
  • [7] Numerical modeling of fracture propagation in orthotropic composite materials using an adaptive phase-field method
    Jain, Ishank
    Annavarapu, Chandrasekhar
    Mulay, Shantanu S.
    Rodriguez-Ferran, Antonio
    INTERNATIONAL JOURNAL OF ADVANCES IN ENGINEERING SCIENCES AND APPLIED MATHEMATICS, 2023, 15 (04) : 144 - 154
  • [8] Numerical modeling of fracture propagation in orthotropic composite materials using an adaptive phase-field method
    Ishank Jain
    Chandrasekhar Annavarapu
    Shantanu S. Mulay
    Antonio Rodríguez-Ferran
    International Journal of Advances in Engineering Sciences and Applied Mathematics, 2023, 15 : 144 - 154
  • [9] Adaptive phase-field modeling of brittle fracture using the scaled boundary finite element method
    Hirshikesh
    Pramod, A. L. N.
    Annabattula, R. K.
    Ooi, E. T.
    Song, C.
    Natarajan, S.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 355 : 284 - 307
  • [10] Global-local adaptive meshing method for phase-field fracture modeling
    Cheng, Fengyu
    Yu, Hao
    Wang, Quan
    Huang, Hanwei
    Xu, Wenlong
    Wu, Hengan
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2025, 438