A Bayesian estimation method for variational phase-field fracture problems

被引:65
|
作者
Khodadadian, Amirreza [1 ,3 ]
Noii, Nima [3 ]
Parvizi, Maryam [1 ]
Abbaszadeh, Mostafa [2 ]
Wick, Thomas [3 ]
Heitzinger, Clemens [1 ,4 ]
机构
[1] Vienna Univ Technol TU Wien, Inst Anal & Sci Comp, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
[2] Amirkabir Univ Technol, Fac Math & Comp Sci, 424 Hafez Ave, Tehran 15914, Iran
[3] Leibniz Univ Hannover, Inst Appl Math, Welfengarten 1, D-30167 Hannover, Germany
[4] Arizona State Univ, Sch Math & Stat Sci, Tempe, AZ 85287 USA
基金
奥地利科学基金会;
关键词
Bayesian estimation; Inverse problem; Phase-field propagation; Brittle fracture; Multi-field problem; FINITE-ELEMENT APPROXIMATION; PROPAGATION; INVERSION; MODELS;
D O I
10.1007/s00466-020-01876-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we propose a parameter estimation framework for fracture propagation problems. The fracture problem is described by a phase-field method. Parameter estimation is realized with a Bayesian approach. Here, the focus is on uncertainties arising in the solid material parameters and the critical energy release rate. A reference value (obtained on a sufficiently refined mesh) as the replacement of measurement data will be chosen, and their posterior distribution is obtained. Due to time- and mesh dependencies of the problem, the computational costs can be high. Using Bayesian inversion, we solve the problem on a relatively coarse mesh and fit the parameters. In several numerical examples our proposed framework is substantiated and the obtained load-displacement curves, that are usually the target functions, are matched with the reference values.
引用
收藏
页码:827 / 849
页数:23
相关论文
共 50 条
  • [1] A Bayesian estimation method for variational phase-field fracture problems
    Amirreza Khodadadian
    Nima Noii
    Maryam Parvizi
    Mostafa Abbaszadeh
    Thomas Wick
    Clemens Heitzinger
    Computational Mechanics, 2020, 66 : 827 - 849
  • [2] Variational phase-field fracture modeling with interfaces
    Yoshioka, Keita
    Mollaali, Mostafa
    Kolditz, Olaf
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 384
  • [3] Variational phase-field fracture with controlled nucleation
    Larsen, Christopher J.
    MECHANICS RESEARCH COMMUNICATIONS, 2023, 128
  • [4] On penalization in variational phase-field models of brittle fracture
    Gerasimov, T.
    De Lorenzis, L.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 354 : 990 - 1026
  • [5] Bayesian inversion for anisotropic hydraulic phase-field fracture
    Noii, Nima
    Khodadadian, Amirreza
    Wick, Thomas
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 386
  • [6] Bayesian inversion for unified ductile phase-field fracture
    Noii, Nima
    Khodadadian, Amirreza
    Ulloa, Jacinto
    Aldakheel, Fadi
    Wick, Thomas
    Francois, Stijn
    Wriggers, Peter
    COMPUTATIONAL MECHANICS, 2021, 68 (04) : 943 - 980
  • [7] Bayesian inversion for unified ductile phase-field fracture
    Nima Noii
    Amirreza Khodadadian
    Jacinto Ulloa
    Fadi Aldakheel
    Thomas Wick
    Stijn François
    Peter Wriggers
    Computational Mechanics, 2021, 68 : 943 - 980
  • [8] A variational phase-field model For ductile fracture with coalescence dissipation
    Hu, Tianchen
    Talamini, Brandon
    Stershic, Andrew J.
    Tupek, Michael R.
    Dolbow, John E.
    COMPUTATIONAL MECHANICS, 2021, 68 (02) : 311 - 335
  • [9] Evaluation of variational phase-field models for dynamic brittle fracture
    Mandal, Tushar Kanti
    Vinh Phu Nguyen
    Wu, Jian-Ying
    ENGINEERING FRACTURE MECHANICS, 2020, 235
  • [10] A variational phase-field model For ductile fracture with coalescence dissipation
    Tianchen Hu
    Brandon Talamini
    Andrew J. Stershic
    Michael R. Tupek
    John E. Dolbow
    Computational Mechanics, 2021, 68 : 311 - 335