A Bayesian estimation method for variational phase-field fracture problems

被引:65
|
作者
Khodadadian, Amirreza [1 ,3 ]
Noii, Nima [3 ]
Parvizi, Maryam [1 ]
Abbaszadeh, Mostafa [2 ]
Wick, Thomas [3 ]
Heitzinger, Clemens [1 ,4 ]
机构
[1] Vienna Univ Technol TU Wien, Inst Anal & Sci Comp, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
[2] Amirkabir Univ Technol, Fac Math & Comp Sci, 424 Hafez Ave, Tehran 15914, Iran
[3] Leibniz Univ Hannover, Inst Appl Math, Welfengarten 1, D-30167 Hannover, Germany
[4] Arizona State Univ, Sch Math & Stat Sci, Tempe, AZ 85287 USA
基金
奥地利科学基金会;
关键词
Bayesian estimation; Inverse problem; Phase-field propagation; Brittle fracture; Multi-field problem; FINITE-ELEMENT APPROXIMATION; PROPAGATION; INVERSION; MODELS;
D O I
10.1007/s00466-020-01876-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we propose a parameter estimation framework for fracture propagation problems. The fracture problem is described by a phase-field method. Parameter estimation is realized with a Bayesian approach. Here, the focus is on uncertainties arising in the solid material parameters and the critical energy release rate. A reference value (obtained on a sufficiently refined mesh) as the replacement of measurement data will be chosen, and their posterior distribution is obtained. Due to time- and mesh dependencies of the problem, the computational costs can be high. Using Bayesian inversion, we solve the problem on a relatively coarse mesh and fit the parameters. In several numerical examples our proposed framework is substantiated and the obtained load-displacement curves, that are usually the target functions, are matched with the reference values.
引用
收藏
页码:827 / 849
页数:23
相关论文
共 50 条
  • [41] Inverse problems of inhomogeneous fracture toughness using phase-field models
    Gao, Yueyuan
    Yoshinaga, Natsuhiko
    PHYSICA D-NONLINEAR PHENOMENA, 2023, 448
  • [42] Analysis Method of Multilayer Ceramic Capacitor Fracture by the Phase-Field
    Li, Donghui
    Zhong, Yuguang
    Zhou, Xue
    Zhai, Guofu
    IEEE TRANSACTIONS ON COMPONENTS PACKAGING AND MANUFACTURING TECHNOLOGY, 2024, 14 (02): : 211 - 220
  • [43] A spatio-temporal adaptive phase-field fracture method
    Labanda, Nicols A.
    Espath, Luis
    Calo, Victor M.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 392
  • [44] Matrix-free multigrid solvers for phase-field fracture problems
    Jodlbauer, D.
    Langer, U.
    Wick, T.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 372 (372)
  • [45] Variational crack phase-field model for ductile fracture with elastic and plastic damage variables
    Han, Jike
    Matsubara, Seishiro
    Moriguchi, Shuji
    Terada, Kenjiro
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 400
  • [46] Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations
    Miehe, C.
    Welschinger, F.
    Hofacker, M.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2010, 83 (10) : 1273 - 1311
  • [47] A phase-field model for spall fracture
    Zhang, Hao
    Peng, Hui
    Pei, Xiao-yang
    Li, Ping
    Tang, Tie-gang
    Cai, Ling-cang
    JOURNAL OF APPLIED PHYSICS, 2021, 129 (12)
  • [48] Phase-field modeling of ductile fracture
    M. Ambati
    T. Gerasimov
    L. De Lorenzis
    Computational Mechanics, 2015, 55 : 1017 - 1040
  • [49] Phase-Field Formulation for Ductile Fracture
    Borden, Michael J.
    Hughes, Thomas J. R.
    Landis, Chad M.
    Anvari, Amin
    Lee, Isaac J.
    ADVANCES IN COMPUTATIONAL PLASTICITY: A BOOK IN HONOUR OF D. ROGER J. OWEN, 2018, 46 : 45 - 70
  • [50] A phase-field model for cohesive fracture
    Verhoosel, Clemens V.
    de Borst, Rene
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2013, 96 (01) : 43 - 62