A Bayesian estimation method for variational phase-field fracture problems

被引:65
|
作者
Khodadadian, Amirreza [1 ,3 ]
Noii, Nima [3 ]
Parvizi, Maryam [1 ]
Abbaszadeh, Mostafa [2 ]
Wick, Thomas [3 ]
Heitzinger, Clemens [1 ,4 ]
机构
[1] Vienna Univ Technol TU Wien, Inst Anal & Sci Comp, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
[2] Amirkabir Univ Technol, Fac Math & Comp Sci, 424 Hafez Ave, Tehran 15914, Iran
[3] Leibniz Univ Hannover, Inst Appl Math, Welfengarten 1, D-30167 Hannover, Germany
[4] Arizona State Univ, Sch Math & Stat Sci, Tempe, AZ 85287 USA
基金
奥地利科学基金会;
关键词
Bayesian estimation; Inverse problem; Phase-field propagation; Brittle fracture; Multi-field problem; FINITE-ELEMENT APPROXIMATION; PROPAGATION; INVERSION; MODELS;
D O I
10.1007/s00466-020-01876-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we propose a parameter estimation framework for fracture propagation problems. The fracture problem is described by a phase-field method. Parameter estimation is realized with a Bayesian approach. Here, the focus is on uncertainties arising in the solid material parameters and the critical energy release rate. A reference value (obtained on a sufficiently refined mesh) as the replacement of measurement data will be chosen, and their posterior distribution is obtained. Due to time- and mesh dependencies of the problem, the computational costs can be high. Using Bayesian inversion, we solve the problem on a relatively coarse mesh and fit the parameters. In several numerical examples our proposed framework is substantiated and the obtained load-displacement curves, that are usually the target functions, are matched with the reference values.
引用
收藏
页码:827 / 849
页数:23
相关论文
共 50 条
  • [11] A DG/CR discretization for the variational phase-field approach to fracture
    Frédéric Marazzato
    Blaise Bourdin
    Computational Mechanics, 2023, 72 : 693 - 705
  • [12] A FFT solver for variational phase-field modeling of brittle fracture
    Chen, Yang
    Vasiukov, Dmytro
    Gelebart, Lionel
    Park, Chung Hae
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 349 : 167 - 190
  • [13] A DG/CR discretization for the variational phase-field approach to fracture
    Marazzato, Frederic
    Bourdin, Blaise
    COMPUTATIONAL MECHANICS, 2023, 72 (04) : 693 - 705
  • [14] A variational formulation of Griffith phase-field fracture with material strength
    Larsen, C. J.
    Dolbow, J. E.
    Lopez-Pamies, O.
    INTERNATIONAL JOURNAL OF FRACTURE, 2024, 247 (03) : 319 - 327
  • [15] Crack nucleation in variational phase-field models of brittle fracture
    Tanne, E.
    Li, T.
    Bourdin, B.
    Marigo, J. -J.
    Maurini, C.
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2018, 110 : 80 - 99
  • [16] Variational Phase-Field Fracture Approach in Reactive Porous Media
    Mollaali, Mostafa
    Yoshioka, Keita
    Lu, Renchao
    Montoya, Vanessa
    Vilarrasa, Victor
    Kolditz, Olaf
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2025, 126 (01)
  • [17] Variational Phase-Field Fracture Approach in Reactive Porous Media
    Mollaali, Mostafa
    Yoshioka, Keita
    Lu, Renchao
    Montoya, Vanessa
    Vilarrasa, Victor
    Kolditz, Olaf
    International Journal for Numerical Methods in Engineering, 126 (01):
  • [18] On crack opening computation in variational phase-field models for fracture
    Yoshioka, Keita
    Naumov, Dmitri
    Kolditz, Olaf
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 369
  • [19] Linear and nonlinear solvers for variational phase-field models of brittle fracture
    Farrell, Patrick
    Maurini, Corrado
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2017, 109 (05) : 648 - 667
  • [20] A variational phase-field model for brittle fracture in polydisperse elastomer networks
    Li, Bin
    Bouklas, Nikolaos
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2020, 182 : 193 - 204